Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY (A constituent Institution of MAHE, Manipal)

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: DIGITAL SIGNAL PROCESSING [ELE 3102]

REVISED CREDIT SYSTEM

Time	e: 3 H	ours	Date: 21 November 2018	Max. Mark	s: 50
Instructions to Candidates:					
	*	Answe	er ALL the questions.		
	*	Missir	ng data may be suitably assumed.		
	**	Quick	reference table may be supplied		
1A.	Obtai Using	in a 4- g Twic	point DFT of the sequence, $x[n] = -5\delta[n+2] + 2\delta[n] + \delta[n-1]$ Idle factor.		(03)
1B.	Find the IDFT of $Y(k) = X(k) ^2$ using properties if $X(k)$ is an 8 point DFT of the sequence of the sequen				
	x[n]	= u[n]	-u[n-6]	1	(04)
10				_	(04)
н.	An ar	nalogi	nput signal $x_a(t) = \cos(40\pi t) + 0.5\cos(100\pi t) + 2\sin(300\pi t)$ is insta	ntaneously	
	sampled with sampling frequency of 200 samples/sec.				
	(i	i)	Find the maximum allowable value of T_s .		
	(1	ii)	Determine the discrete time signal x[n] and mention aliasing if any.		
	(1	iii)	Obtain the reconstructed signal $y_a(t)$		(02)
			ŭ		(03)
2A.	If x[n	ı] is a	finite length sequence with $X(k) = \{3, 3 + j4, -3, 3 - j4\}$. Using propert	ies find the	
	DFT of $y_1[n]$ and $y_2[n]$				
	(1	i)	$y_1[n] = \cos\left(\frac{\pi n}{2}\right) x[n]$		
	(1	ii)	$y_2[n] = x((n+2))_4$		(03)
2B.	Deter	rmine	the output y(n) of a filter using Overlap save method whose impulse	response is	
	$h[n] = -3\delta[n] + \delta[n-1] - \delta[n-2]$ and				
	input	t sequ	ence $x[n] = (-2)^n \cos\left(\frac{\pi n}{2}\right) \{u[n] - u[n-8]\}$. Take sub-frame length of	4.	(03)
2C.	Synth of the	hesize e syste	the transfer function H(z) using a lattice ladder network. Comment on t em. Draw the lattice ladder network.	he stability	
		H	$(z) = \frac{1 + z^{-1} + 0.5z^{-2}}{1 + 0.2z^{-1} - 0.15z^{-2}}$		(04)

(04)

3A. Design an FIR digital filter that will reject a very strong 60 Hz sinusoidal interference contaminating a 300 Hz useful sinusoidal signal. Find the system function and gain of the digital system such that the filter does not change the amplitude of the useful signal. Assume sampling frequency Fs=1200 Hz. Also draw the pole zero plot.

(03)

- **3B.** Find the eight point DFT of $x(n) = 3\delta(n+2) 2\delta(n+1) + \delta(n) + 4\delta(n-2) 3\delta(n-4)$ using Radix-2 DIT FFT algorithm. Draw the DIT FFT butterfly diagram and show the calculation for each stage. (04)
- **3C.** Consider a causal linear time-invariant system whose system function is

$$H(z) = \frac{1 - \frac{1}{5}z^{-1}}{\left(1 - \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

1

Draw the filter structure for implementation of the system using

- a. Direct form Ib. Direct form II(03)
- **4A.** Design a 7-tap linear phase FIR digital filter using Hanning window for the following desired frequency response. Also draw the linear phase realization of the filter.

$$\left|H_{d}\left(e^{j\omega}\right)\right| = \begin{cases} 1; & \text{for } |\omega| \le \frac{\pi}{4} \\ 0; & \text{for } \frac{\pi}{4} \le |\omega| \le \frac{\pi}{2} \\ 1; & \text{for } \frac{\pi}{2} \le |\omega| \le \pi \end{cases}$$

$$(05)$$

4B. Design an ideal low-pass FIR digital filter using frequency sampling method to satisfy the following condition.

Length of filter= 11

Sampling frequency = 20 kHz

Pass-band: $0 \le F \le 5 kHz$

Also find the transfer function of the filter.

5A. Determine the coefficient of linear phase FIR filter described by difference equation

$$y[n] = ax[n] + bx[n-1] + cx[n-2] + dx[n-3] + gx[n-4]$$

Given: $\left| He^{j0} \right| = 0.02; \left| He^{j0.5\pi} \right| = 0.707; \left| He^{j\pi} \right| = 1;$ (04)

5B. Design a Butterworth digital IIR low-pass filter using Bilinear transformation (BLT) technique to satisfy the following specifications:

Sampling frequency: $10^4 Hz$

$$0.8 \le \left| H\left(e^{j\omega}\right) \right| \le 1; \quad \text{for } 0 \le \omega \le 0.4\pi$$
$$\left| H\left(e^{j\omega}\right) \right| \le 0.1; \quad \text{for } 0.8\pi \le \omega \le \pi$$
(06)

(05)