| Reg. No. |
|----------|
|----------|



## V SEMESTER B.TECH. (INFORMATION TECHNOLOGY) **END SEMESTER EXAMINATIONS, NOVEMBER 2018**

SUBJECT: DESIGN AND ANALYSIS OF ALGORITHMS [ICT 3107]

## REVISED CREDIT SYSTEM (19/11/2018)

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

- Answer ALL the questions.
- Missing data if any, may be suitably assumed.
- 1A. Find the shortest tour covering all the cities in a graph given in Fig. Q.1A using Backtracking 5 approach with detailed steps and find its time complexity.



Fig. O.1A

- 1B. Derive the average case time complexity analysis for the Quick sort algorithm.
- 1C. How many 1's does the following procedure print when run with input n? Compute its 2 asymptotic time complexity (best bound).

Ones(n){ if n = 0 print 1; else: for i = 1 to  $2^n$ Ones(n-1);

- 2A. Use the dynamic programming approach to solve the following 0/1 knapsack problem. Number of items = 4, Capacity = 8, Weight = [1, 5, 3, 4] & Profit = [15, 10, 9, 5]
- Write an efficient algorithm to find the topological ordering among the subtasks of a given 3 project.
- 2C. Given an arbitrary connected graph G = (V, E) with positive edge weights, will the minimum 2 cost edge in G (assume there is only one such edge in G) always be present in every MST of G? If YES, give a short justification, if NO, give a counter example.

3

5

ICT 3107

Page 1 of 2

- **3A.** Write a function for finding rank of an element in a sequence and find it's time complexity using operation count method.
- **3B.** Write an algorithm to find the path between given nodes in a graph and analyze the time **3** complexity.
- 3C. If the optimal solution for the 0/1 knapasck problem exists at the left most subtree of the solution space tree then what could be the time complexity of finding optimal solution using backtracking method (Note: using bounding function)?
- **4A.** Construct a 5-order B-tree for the data given below: 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56
- 4B. The arrival and departure times of all trains that reach a railway station are given below. Apply greedy technique to find the minimum number of platforms required for the railway station so that no train waits.

Input: arrival [] =  $\{9:00, 9:40, 9:50, 11:00, 15:00, 18:00\}$ departure [] =  $\{9:10, 12:00, 11:20, 11:30, 19:00, 20:00\}$ 

- 4C. Explain NP-hard and NP-complete problems and give suitable examples.
- 5A. Use Dijkstra's algorithm to find the shortest part from vertex 1 to all other vertices in the graph given in Fig. Q.5A.



Fig. Q.5A

- **5B.** Write an approximation algorithm for travelling sales person problem and calculate it's time complexity. Is travelling sales person problem NP-Complete? Justify your answer.
- **5C.** Given an unsorted array A of n integers, some of which may be duplicates, write an efficient algorithm to remove duplicate entries. What is the time complexity of the algorithm?

5

5

2

3

2