Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH. (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2018

SUBJECT: HYPERSONIC AEROTHERMODYNAMICS [AAE 4003] REVISED CREDIT SYSTEM (31/12/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.
- Gas tables will be provided by the department
- What is hypersonic equivalence principle? Also prove that according to blast (05) wave theory the pressure distribution for the blunt nosed slab varied inversely with 'x^{2/3}' (distance)
- **1B.** Explain the followings:

(05)

(05)

- a) Why Newtonian theory only applicable to hypersonic flow?
 b) What is the reason behind hypersonic boundary layer thicker that
- b) What is the reason behind hypersonic boundary layer thicker than other flow regimes?
- c) At high temperature effects y-axis boundary layer hypersonic theory is not valid, why?
- d) At hypersonic speed which property is crucial compared to velocity and drag? Explain why?
- e) What are limitations of Method of Characteristics?
- **2A.** Draw the schematic diagrams of gas dynamic laser and electric discharge **(05)** laser. Explain their functions and operations.
- **2B.** Draw the schematic diagram of Hypersonic Shock Wave Boundary layer **(05)** interactions and explain their features.
- **3A.** Explain the followings:
 - a) Adiabatic wall enthalpy
 - b) Similarity parameter
 - c) Wave rider
 - d) Entropy layer
 - e) Croccos theorem
- **3B.** Derive the basic hypersonic shock relations and prove that wave angle is 20% **(05)** larger than deflection angle in hypersonic flows.
- 4A. Consider the flat plate at an angle of attack 8deg in a Mach 6 inviscid flow. (05) Calculate the pressure coefficients on the top and bottom surface of the plate, the lift and drag coefficients and the lift-to-drag ratio by using
 - a) Exact shock wave and expansion wave theory
 - b) Newtonian theory
 - c) Compare the results

4B. Consider a flat plate at zero angle of attack in airflow at 15km altitude with **(05)** chord length 3.2m and reference area 65m²(assume area per unit span). If then calculate the followings

Case A- Insulated	Case B- Hot wall	
plate		
i) Local shear stress	i) Local shear stress at	P∞=11kPa,T∞=216.6K,
at 1.2m from leading	1.2m from L.E	T _e =T∞,
edge	(C _f √Re.x =0.54)	µ∞=1.42*10 ⁻⁵ kg/m.s,
(C _f √Re.x =0.415)	ii) Total drag of the plate	V∞=3800m/s, Pr=0.725,
	iii) Heat transfer rate at	R=287, γ=1.4
ii) Total drag of the	1.8m from leading	
plate	edge(Tw=576K) and CH	
	√Re.x =0.32	

- **5A.** What is the role of $\bar{\chi}$ (chi bar) in hypersonic viscous interactions and derive the **(05)** equation for weak viscous interactions.
- **5B.** What are the importance of Ballistic and Lifting coefficients in Hypersonic **(05)** flows? Explain it with their derivations and Velocity Altitude Map.