

MANIPAL INSTITUTE OF TECHNOLOGY

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2018

SUBJECT: NATURAL GAS ENGINEERING [CHE 4001]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions. Read the questions carefully.
- ✤ Missing data may be suitably assumed.
- Refer formulae sheet

1A.	Explain various types of natural gas resources? Draw the schematic atomic structure												
	of methane hydrates?											3	
1B.	For the natural gas composition given in the below table, calculate the gas												
	formation volume factor in rb/scf, if the gas density is 3.38 lbm/ft ³ .												
	Component	C ₁	C ₂	C ₃	i-C ₄	n-C ₄	i-C ₅	n-C ₅	C ₆	N ₂	CO ₂	H ₂ S	
	Mol.fraction	.82	.073	.021	.006	.002	.003	.008	.002	.035	.01	.02	3
1C.	For the natural gas composition described in Q.No. 1B, calculate the compressibility												
	factor at 3000 psia, and 250 °F using Brill and Beggs Method.										4		
2A	Write various well integrity tests performed on gas/oil well and briefly explain?									3			
2B.	A gas well produces 0.65 specific gravity natural gas. The average reservoir pressure												
	is 4,505 psia. Reservoir temperature is 180 °F. The well was tested at two flow rates:												
						Test P	oint 1	Test	Test Point 2				
		Flow rate				1,152 Mscf/d		1,54	1,548 Mscf/d				
		Bottom hole pressure				3,025 psia		1,68	1,685 psia				
	Estimate the deliverability of the gas reservoir under a pseudo-steady state flow												
	condition at a flowing bottom hole pressure of 950 psia using the backpressure												
	model with pressure-squared approach.										3		

2C.	Construct IPR curve for well specified in 2B with backpressure model with pressure- squared approach. Use five intervals between base pressure 14.7 psia to average reservoir 4,505 psia.	4			
3A.	A 0.70 specific gravity natural gas flows from a 2-in pipe through a 1-in nozzle-type choke. The upstream pressure and temperature are 120 psia and 70 °F, respectively.				
	The downstream pressure is 90 psia (measured 2 ft from the nozzle). Viscosity of gas				
	is 0.009459 cp. The gas-specific heat ratio is 1.3. (i) What is the expected daily flow				
	rate? (ii) Is icing a potential problem? Consider z_{up}/z_{outlet} as 1.				
3B.	Explain how the operating gas flow rate is evaluated using the numerical and graphical method from a) Nodal analysis at bottom hole node (IPR and TPR)				
	Clearly mention the parameters of both the axis of each plot.				
	4A.	What is real gas pseudo pressure? Explain the various pressure approximations that	6		
-7.	are used to model the IPR using analytical approach using the real gas pseudo				
	pressure vs pressure plot?				
4B.	Derive steady state IPR using m(p) approach for radial flow of a single phase,	3			
4D.	compressible fluid through porous and permeable rock				
	$q_{sc} = \frac{\pi kh}{T} \frac{T_{sc}}{P_{sc}} \frac{\left(m(p_e) - m(p_{wf})\right)}{\ln(r_e / r_w)}$ using the following steady state boundary				
	condition $\frac{\partial m(p)}{\partial t} = 0$	4			
4C.	Calculate Absolute Open Flow (AOF) conditions using pseudosteady state analytical				
	expression for radial-flow gas reservoir with pressure square approach for the				
	below given well conditions and discuss the results.				
	Effective permeability to gas: 0.17 md				
	Pay zone thickness: 78 ft				
	Equivalent drainage radius: 1,490 ft				
	Wellbore radius: 0.328 ft				
	Reservoir pressure: 4,613 psia				
	Temperature: 180 °F The average gas viscosity: 0.022 cp				
	The average gas compressibility factor: 0.96				
	Assume both Darcy skin factor and Non-Darcy coefficient to be zero.	3			
5A.	Explain the process of sweetening of natural gas by absorption using basic flow				
	diagram.				
5B.	List down the advantages and operating difficulties with solid-desiccant dehydration	3			
	of natural gas.				
5C	What are natural gas hydrates and also explain hydrate forming conditions?	4			
	what are natural gas nyurates and also explain nyurate forming conditions!	3			

Formulae Sheet

Pseudocritical Properties

 $P_{\rho c} = 709.604 - 58.718\gamma_{g}$ $T_{\rho c} = 170.491 + 307.344\gamma_{g}$ $P_{\rho c} = 678 - 50(\gamma_{g} - 0.5) - 206.7\gamma_{N_{2}} + 440\gamma_{CO_{2}} + 606.7\gamma_{H_{2}S}$ $T_{\rho c} = 326 + 315.7(\gamma_{g} - 0.5) - 240\gamma_{N_{2}} - 83.3\gamma_{CO_{2}} + 133.3\gamma_{H_{2}S}$

☑ Compressibility Factor: Brill and Beggs' Correlation Constants

 $A = 1.39(T_{pr} - 0.92)^{0.5} - 0.36T_{pr} - 0.1$

$$B = (0.62 - 0.23T_{\rho r})P_{\rho r} + \left(\frac{0.066}{T_{\rho r} - 0.86} - 0.037\right)P_{\rho r}^{2} + \frac{0.32P_{\rho r}^{6}}{10^{9(T_{\rho r} - 1)}}$$

 $C = 0.132 - 0.32 \log(T_{pr})$

 $D = 10^{\wedge} (0.3106 - 0.49T_{pr} + 0.1824T_{pr}^2)$

☑ Pseudosteady state flow IPR for radial flow gas reservoir using pressure square approach and pressure approach

$$q = \frac{kh\left[m(\bar{p}) - m(p_{wf})\right]}{1424T\left[\ln\left(\frac{0.472r_e}{r_w}\right) + s + Dq\right]}$$
$$q = \frac{kh\left[\bar{p}^2 - p_{wf}\right]^2}{1424\bar{\mu}\,\bar{z}\,T\left[\ln\left(\frac{0.472r_e}{r_w}\right) + s + Dq\right]}$$
$$q = \frac{kh\left[\bar{p} - p_{wf}\right]}{141.2X10^3\bar{B}_g\,\bar{\mu}\left[\ln\left(\frac{0.472r_e}{r_w}\right) + s + Dq\right]}$$

G Gas Reservoir Deliverability: Empirical Models (Forchheimer and Backpressure model) $\bar{p}^2 - p_{wf}^2 = Aq + Bq^2$ $q = C(\bar{p}^2 - p_{wf}^2)^n$

Wellbore Performance: The Average Temperature and Compressibility Factor Method

$$p_{wf}^{2} = Exp(s)p_{hf}^{2} + \frac{6.67X10^{-1}[Exp(s) - 1]fq_{sc}^{2}Z^{-1/2}}{d_{i}^{5}\cos\theta} \qquad s = \frac{0.0375\gamma_{g}L\cos\theta}{\overline{ZT}}$$
$$f = \left[\frac{1}{1.74 - 2\log\left(\frac{2\varepsilon}{d_{i}}\right)}\right]^{2}$$

☑ Choke Performance: Gas Passage for Subsonic and Sonic flow

$$Q_{sc} = 1248CAP_{up}\sqrt{\frac{k}{(k-1)\gamma_g T_{up}}} \left[\left(\frac{P_{dn}}{P_{up}}\right)^{\frac{2}{k}} - \left(\frac{P_{dn}}{P_{up}}\right)^{\frac{k+1}{k}} \right]$$
$$Q_{sc} = 879CAP_{up}\sqrt{\left(\frac{k}{\gamma_g T_{up}}\right)\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}$$

☑ Sounders-Brown empirical equation for gas capacity of oil/gas separators

$$q_{st} = \frac{2.4D^2 Kp}{z(T+460)} \sqrt{\frac{\rho_L - \rho_g}{\rho_g}}$$

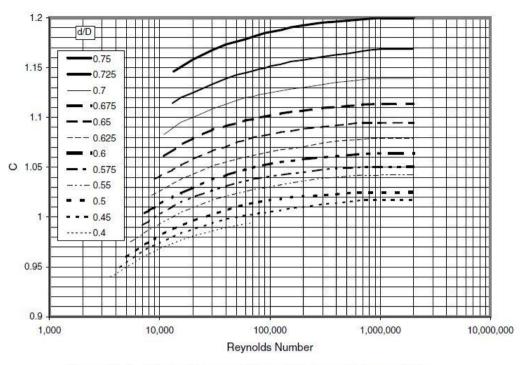


Figure 5–1 Choke flow coefficient for nozzle-type chokes.

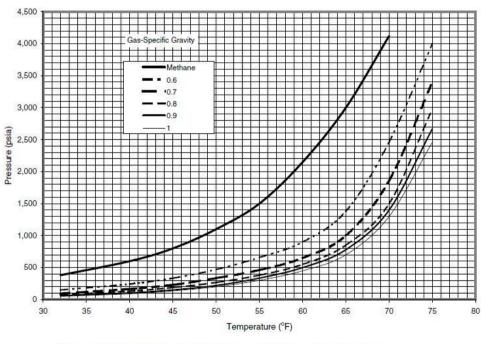


Figure 12–4 Hydrate-forming conditions of natural gases (Courtesy of SPE-AIME).