

VII SEMESTER B.TECH. END SEMESTER EXAMINATIONS NOV 2018

SUBJECT: PROJECT ENGINEERING

PE IV [CHE 4023]

REVISED CREDIT SYSTEM (27/11/2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A.	Write a short note on different types of plant layouts with suitable examples.	04
1B.	Consider an exothermic reaction controlled by cooling water. Using study nodes as the cooling coil with process parameters as flow and temperature, perform a HAZOP study tabulating possible causes and possible consequences.	03
	Monomer feed Cooling coils Cooling water out Cooling water in	
1C.	Explain each of the components in the P&ID given below: V-102 G FI 4" Sch 40 CS	03

CHE 4023 Page 1 of 2

	Construct a stream table for each component in a HDA process.	
2A.	$C_6H_5CH_3 + H_2 \longrightarrow C_6H_6 + CH_4$	08
	$2C_6H_6$ $C_{12}H_{10} + H_2$	
2B.	Differentiate maximum and optimum yield with a suitable example.	02
3A.	The following are the data for HDA process:	
	Heat of reaction = -21530 Btu/mol Toluene; Production rate of Benzene = 265 mol/h; Selectivity = 0.98; Per pass conversion = 75%	
	Reactor effluent: Benzene = 265 mol/h; Unreacted toluene = 91 mol/h; Diphenyl = 4 mol/h; Make-up gas = 496 mol/h; Recycle gas = 3371 mol/h.	07
	Justify whether the reactor can be operated adiabatically or isothermally by assuming that the reactants enter at 1150°F and the temperature limit for HDA process is 1150°F-1300°F.	
3B.	The original cost of an equipment is \$1000 and the period of recovery is 5 years. Calculate the book value and depreciation using Modified accelerated cost recovery system	03
4A.	A company makes two types of products, A and B. These products are produced during a 40-hour work week and then shipped out at the end of the week. They require 20 and 5 kg of raw material per kg of product, respectively, and the company has access to 10,000 kg of raw material per week. Only one product can be created at a time with a production times for each of 0.05 and 0.15 hrs, respectively. The plant can only store 550 kg of total product per week. Finally, the company makes profits of \$45 and \$30 on each unit of A and B, respectively. Set up the linear programming problem to maximize profit and solve it graphically.	06
4B.	Write a short note on non-ferrous metals used in process industries with their merits and demerits.	04
5A.	Write a short note on types of capital cost effectiveness with probable error, purpose and level of engineering required.	05
5B.	Estimate the fixed capital investment for a 1500 ton/day ammonia plant using the turnover ratio method. The current gross selling price of ammonia is \$150/ton. The plant will operate at 95% stream time for 365 days/year. Given: turnover ratio is 0.65 for ammonia plant.	02
5C.	Write a short note on cumulative cash position with a schematic representation assuming that the depreciation is linear over 20 years of operation.	03
