Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

VII SEMESTER B.TECH. (CIVIL ENGINEERING) **END SEMESTER EXAMINATIONS, NOV/DEC 2018** SUBJECT: BRIDGE ENGINEERING [CIE 4019] **REVISED CREDIT SYSTEM** (27/11 /2018)

Time: 3 Hours

MAX. MARKS: 50

ا مرا		4.0	Condidates
Ins	structions	το	Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Explain impact load consideration for IRC Class A and B loading, Class AA loading or Class 70R loading	(04)	CO1
1 B .	Describe economic span. What are the assumptions?	(04)	CO1
1C.	Write pipe designation and utility of Non pressure pipes used in construction of pipe culverts.	(02)	CO2
2A.	Design a deck slab bridge for the following data (check for shear not necessary) Clear distance between abutments = 6.5 m Width of Foot path = 1 m on either side Width of bearing = 400 mm Wearing coat = 80 mm average Loading = IRC Class AA (Tracked) Width of road (two lane) = 7.5 m Materials = M 25 grade concrete and Fe 415 Steel. Assume, Overall thickness of slab= 80mm/m	(10)	CO3
3.	Explain with the help of neat sketch locating various components of Well foundation	(10)	CO4
4A.	With the help of neat sketch, Write short note on(i). Steel Rocker bearing(ii). R.C.fixed (rocker) bearing	(04)	CO4
4B.	Design an elastomeric unreinforced neoprene pad bearing to suit the following data: Vertical load (sustained) : 220kN Vertical load (Dynamic) :40kN 4B Horizontal force (sustained): 20kN Horizontal force (dynamic) : 10kN Modulus of rigidity of elastomer 'G': 1N/mm ² Friction coefficient: 0.20 Adopt, dimension of elastomeric bearing: a = 250mm & b = 500mm	(06)	CO4
5.	A prestressing concrete slab deck of a bridge is 425mm thick with an effective span of 8m. The service load is computed as 305 kNm/m at centre of span section. If the compressive stress permissible at transfer is 16 N/mm ² and tensile stresses are not permitted, check the adequacy of section & estimate the minimum prestressing force & also calculate the corresponding eccentricity at mid span section. Assume loss ratio = 0.8	(10)	CO5