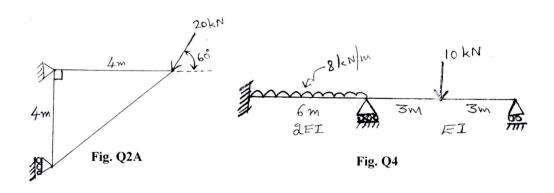
Reg. No.

VII SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2018 SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS [CIE 4015] REVISED CREDIT SYSTEM (29 /11 /2018)

Time: 3 Hours


MAX. MARKS: 50

Instructions to Candidates:

 \clubsuit Answer ALL the questions & missing data may be suitably assumed

Compulsorily write DOF numbers and node numbers wherever required.

1A.	Explain the procedure to obtain element equilibrium equation using principle of minimum potential energy.	(05)	CO1
1 B .	Derive the element stiffness matrix for 2 noded bar element	(05)	CO2
2A.	Analyze the truss shown in Fig.Q2A and determine member forces in each member. Take $A = 1400 \text{mm}^2$ and $E = 2x \ 105 \text{ N/mm}^2$.	(07)	CO3
2B.	Derive the transformation matrix for a plane truss element.	(03)	CO3
3A.	A space truss element defined by nodes $(1, 1.2)$ and $(2, 5.3)$ meters is subjected to 100 N/mm ² of tensile stress. If first node is observed to have a local displacement of -3 mm, determine the displacement in the second node. Also, determine the nodal displacements in global direction. Take E=2.1 x 10 ⁵ N/mm ² .	(05)	CO3
3B.	Write the nudal load vector for a beam element of length 5m and cis $0.23 *0.4 \text{ m}^2$ if it is loaded with a midspan point load of 10 kN downward and a point load of 5kN acting downward on the right hand side node. Consider self-weight. Take density of material as 25kN/m^3 .	(05)	CO4
4.	Analyze the continuous beam shown in the Fig.Q4. Take $EI= 10,000 \text{ kNm}^2$. Determine reactions and draw FBD	(10)	CO4
5A.	Examine the validity of mapping for the 4-noded element defined by Cartesian coordinates $\{(0,0), (4,0), (3,8), (0,2)\}$	(07)	CO5
5B.	Explain Gaussian-quadrature numerical integration rule and evaluate integral $\int_{-1}^{1} x^3 dx$ using 2-Gauss point	(03)	CO5

