Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2018 SUBJECT: HYDROLOGICAL ANALYSIS [CIE 4006]

Date of Exam: 29-11-2018

Time of Exam: 2.00 to 5.00 pm

MAX. MARKS: 50

Instructions to Candidates: Answer ALL the questions & missing data may be suitably assumed. Draw neat sketches wherever necessary

1A.	Define the term "stream order", with a neat sketch. Discuss its significance in hydrological analysis											
1B.	Discuss any two methods of rainfall data presentation. Explain the procedure for checking the rainfall data for consistency	4	CO2									
1C.	Compute the runoff volume due to a rainfall of 15cm in a day on a 550ha watershed. The hydrological soil groups are 50% of group C and 50% of group D, randomly distributed in the watershed. The land use is 55% cultivated with good quality bunding and 45% waste land. Assume antecedent moisture condition of Type III and use standard SCS-CN equations.	4	C03									
2A.	Define potential evapotranspiration and factors affecting the same. List the various data needed to use Penman's equation for estimating the potential evapotranspiration from a given area.											
2B.	The mass curve of rainfall in a storm of total duration 90 minutes are given below; obtain the ordinates of: (USE NATURAL GRAPH) (i). Plot the maximum intensity (in mm/hr) - duration curve (in minutes) (ii).Plot the maximum depth (in mm) -duration curve (in minutes) Time (minutes) 0 10 20 30 40 50 60 70 80 90 Cumulative rainfall 0 8 15 25 30 46 55 60 64 67											
2C.	Distinguish between; (i) Infiltration capacity and infiltration rate (ii) Depression storage and interception.	2	C03									
3A.	Define the following terms with respect to flood studies(i) Time of concentration(ii) Runoff co-efficient(iv) Peak lag(v) Peak attenuation											
3B.	A culvert was built to function for a period of 35 years and is designed for a magnitude of return period 100 years. (a) What is the risk of this hydrologic design? (b) If risk of 20% is acceptable, what return period will have to be adopted?	2.5	CO5									
3C.	The stream flows due to three successive storms of 2.9. 4.9 and 3.9 cm of 6 hours duration each on a basin are given below. The area of the basin IS 118.8km ² . Assuming a constant base flow of 20 cumec, derive a 6-hr unit hydrograph for the basin. An average storm loss of 0.15cm/hr can be assumed. (NO GRAPH) Time 0 3 6 9 12 15 18 21 24 27 30 33 [hr] [hr]											

4A.	Given the unit hydrog Plot all the graph (ON Time (hr) 4hr UHO	ordina graph colum PLA 0 0	ates o for the nns co IN SF 4 20	f a 4h ne sam omput HEET) 8 8 80	r ur ie ca ied ').	nit hy atchn versu 2 30	vdrog nent is tin 16 150	graph a by sup ne alon 20 130	s belo erpos g wit 24 90	bw, d ition n the 28 52	eriv met rain	ve the o thod. nfall dep 32 27	rdinate pth ver 36 15	dinates of a 12-hr th versus time bar 36 40 44 15 5 0		6	CO4
4B.	Describe the S-curve method of developing a 6hr UH by using 12 hr UH of the catchment.											4	CO4				
5A.	The storage Elevation Storage 1 Outflow (m ³ /s) When the reservoir. (e, elev (m) 0 ⁶ (m ² discha reserv USE	vation ³) arge roir le	and c 299.5 4.8 0 evel is URAL	outflow data 50 300.20 5.5 0 s at 301.20m, L GRAPH)			of a res 300.70 6.0 15 the fo	8 ervoi 0 30 6. 40 11 owi	voir are g 301.20 6.6 40 wing floo		en belo 301.70 7.2 75 flow is	w: 302.2 7.9 115 s expec	0 3 8 1 etted in	02.70 .8 60 nto the	7	CO5
	Time (hr) Discharge Route the f	Time (hr) Discharge (m ³ /s) Route the flood and ol			0 the	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9 60 lydrogr	12 53 aph.	1	-3	18 32	21 22	24 16	27 10		
5B.	A 100 ha watershed has the following characteristics(i). Maximum length of travel of water in the catchment = 3500m(ii). Difference in elevation between the most remote point on the catchment and the outlet =65m(iii). Land use/ coverArea (ha)Runoff Co-efficientForest300.25Pasture100.16Cultivated land600.40The maximum intensity-duration-frequency relationship for the watershed is given by $i = \frac{3.97T^{0.165}}{(D+0.15)^{0.733}}$ Where i= intensity in cm/hr, T= Return period in years and D = duration of rainfall in hours. Estimate the 25-year peak runoff from the watershed that can be expected at the outlet of the watershed.											3	CO5				