

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH. (CIVIL) END SEMESTER EXAMINATIONS, NOV/DEC 2018 SUBJECT: RAILWAY & AIRPORT ENGINEERING [CIE 4102]

Date of Exam:

Time of Exam: 2:00 pm - 5:00 pm

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

Q. No		Marks	CO	
1A.	Describe the following terminologies used in railways: a) Track Modulus b) Audible signal c) Adzing of sleepers d) Chairs	2	1	
1B.	1B. Compute the steepest gradient that a train of 20 wagons and a locomotive can negotiate given the following data: weight of each wagon = 20 t, weight of locomotive = 150 t, tractive effort of locomotive = 15 t, rolling resistance of locomotive = 3 kg/t, rolling resistance of wagon = 2.5 kg/t, speed of the train = 60 km/h.			
1C.	• Derive an equation for a tractive effort by a steam locomotive and discuss the assumptions that can be drawn out from the equation.			
2A.	Describe the term creep indicator. List out the requirements of a good sleeper used in a railway track.	4	1	
2 B .	B. Explain the concept of negative super elevation on track with a neat sketch.		1	
2C.	C. Calculate the maximum permissible speed on a 1° curve on a Rajdhani route with a maximum sanctioned speed of 130 km/h. The super elevation provided is 50 mm and the transition length is 60m. The transition length of the curve cannot be increased because of the proximity of the yard.		3	
3A.	Illustrate a left hand turnout with a neat sketch.	3	2	
3B.	Explain with a neat sketch the automatic block system.	4	4	
3C.	Distinguish between co-acting signal and routing signal.		4	
4A.	Define the following terms: (i) Gate position (ii) Mach Number iii) Wind rose diagram	3	1	

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

Q. No					Marks	CO
4 B	Explain with a neat sketch the lift and drag forces acting on an aircraft.					1
4C	A taxiway is to be designed for operating a subsonic aircraft on a class B airport which has the following characteristics: Wheel base 28.7m Tread of main gear loading gear 6.62m Turning speed 12.5 m/s				3	4
	Coefficient of fri Determine the tur	ction between tire and p rning radius of taxiway	pavement surface 0.13			
5A	An airport is proposed at an elevation of 400 m above Mean Sea Level where the mean of maximum and mean of average daily temperature of the hottest month are 44.8° C and 26.2° C respectively. Length of the runway under standard conditions is 2.5 km. Gradient to be provided at site is as follows:			4	4	
	10110 005.	Range in metres	Gradient in %	_		
	-	<u> </u>	-0.5	_		
	-	1000 1500	+0.3	_		
	-	1500 - 2000	+0.5	-		
	-	2000 - 2500	+0.3	_		
	Determine the actual length of runway at the site.					
5B.	Explain with a neat sketch the various aircraft parking systems.				4	5
5C.	Describe the various components of an Instrument Landing System				2	5
50.	Describe the various components of an Instrument Landing System.					