
Reg. No.

VII SEMESTER B.TECH. (COMPUTER SCIENCE AND ENGINEERING) MAKE-UP

EXAMINATIONS, DEC 2018

SUBJECT: SOFTWARE TESTING AND ANALYSIS [CSE 4020]

REVISED CREDIT SYSTEM
(…./…../2018)

Time: 3 Hours MAX. MARKS: 50

1A. Differentiate between alpha, beta and acceptance testing with an example. 4M

1B. Consider a problem for the determination of the nature of roots of a quadratic equation.

Its input is a triple of positive integers (say a, b and c) and values may be from interval

[0, 100]. The output may have one of the following words: Not a quadratic equation,

Real roots, Imaginary roots, Equal roots. (Hint: Determinant (D) =b
2
-4ac. If D=0 roots

are equal, if D>0 roots are real.)

Design boundary value analysis test cases and robust test cases.

4M

1C. Create efficient set of equivalence classes and generate strong normal test cases for the

problem in Q1B.
2M

2A. Create an efficient limited entry decision table for the problem given in Q1B. And also

derive the test cases out of it.
4M

2B. For the code shown in Fig Q2B. Write test cases to achieve maximum statement

coverage and maximum branch coverage. Compute and analyse the statement coverage

and branch coverage metric for your test case.

1 int findSubstring(char str[], char srcstr[])

2 int k=0,j=0,isFound = 0,isMissing=1;

3 for(int i=0;str[i]!='\0';i++) {

4 if(str[i]==srcstr[0]) {

5 j=0,k=i;

6 isFound=1;

7 for(j=0;srcstr[j]!='\0';j++,k++) {

8 if(srcstr[j]!=str[k]) {

9 isFound=0;

10 break;

11 }

12 }

13 if(isFound) {

14 cout<<"Found at Position:"<<i+1;

15 isMissing=0;

16 }

4M

Instructions to Candidates:

 Answer ALL questions.

 Missing data may be suitable assumed.

Reg. No.

17 }

18 }

19 if(isMissing)

20 cout<<"Substring not Found";

21 }

 Fig Q2B

2C. When should black box testing and white box testing be used respectively? Why? 2M

3A. For the code in Fig Q2B, draw the CFG (each numbered statement is a node). List all

the def-use pairs for the variables:i,j,k,isFound and isMissing. Write test cases to

satisfy all-def adequacy criteria.

4M

3B. Consider the program given below, Suppose main () module is not ready for the

testing of Largest () module, design and explain how will you test this module in an

integration scenario?

Program

int Largest()

{

 r = 1;

 for (i = 1; i < 3; ++i) {

 if (a[i] > a[r])

 r = i;

 }

 return r;

}

2M

3C. Consider the program given in Fig Q.3C for finding the index of the largest number

in an array of three elements. Perform all steps of mutation testing on the test cases

given in Fig Q.3.A.2 using following mutant operators:

Replace 'a[i]' with 'i'

Replace '>' with '>=' (greater than with greater than and equal)

Replace ‘a.Length’ with ‘a.Length - 1’

Program

1 static int Largest(int[] a)

2 {

3 int r = 1;

4 for (int i = 1; i < a.Length; ++i)

5 {

6 if (a[i] > a[r])

7 r = i;

8 }

4M

9 return a[r];

10 }

 Fig Q3C

 a[0] a[1] a[2]

TD1 1 3 1

TD2 1 2 1

 Fig Q3C1

Write extra test cases to achieve 100% test adequacy.

4A. Explain Test Minimization and Test Prioritization with an example for each. 5M

4B. How is mutation testing different from other testing techniques? Explain the

significance of mutation score.
2M

4C. For the given code, list the definition, p-use and c-use of each of the variable used in

the code.

1. int test(int a, int b) {

2. int k;

3. int *arr;

4. k = a;

5. arr = malloc(sizeof(int));

6. *arr = k + a;

7. if (*arr > b)

8. return (a);

9. else {

10. arr = malloc(sizeof(int));

11. *arr = a + b;

12. return(*arr);

13. }

14. }

3M

5A. Consider a 2 variable system, show using diagrams the number of test cases required

for:

Normal Boundary Value Test Case

Robust Boundary Value Analysis Test Case

Robust Worst Case (BVA) Test Case

Strong Normal Boundary Value

Weak Robust Boundary Value Test Case

Extrapolate these results to give the formula to find the number of test cases required

for an ‘n’ variable system.

4M

5B. What is regression testing? Describe the problems in test selection with a neat

diagram. Explain the test all approach with suitable example.
3M

5C. Describe the factors affecting the choice of integration strategy with an example for

each.

3M

