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Instructions to candidates

o Answer ALL questions. All questions carry equal marks.
o Missing data if any, may be suitably assumed.

1A. Consider a linear regression problem in which we want to weight different training exam-
ples differently. Specifically, suppose you want to minimize

J(0) = % Z w® (677 — y(i)f _

i=1
i) Show that J(#) can be written as
J(0) = (X0 —9)TW(X0—7)
for an appropriate diagonal matrix W, and where X and 7 are as defined in the

class.

ii) Suppose you have a training set {(z,y®);i = 1,...,m} of m independent ex-
amples, but in which the y’s were observed with differing variances. Specifically,
suppose that

o @) _ gT4)2
p(y?|z®; 9) = .(.L__)) _

1
/oro® e s (_ 2(c®)2

Show that finding the maximum likelihood estimate of @ reduces to solving a weighted
linear regression problem. 5]

1B. Consider the geometric distribution, which is parametrized by ¢ given by

p(y; 9) = (1 —¢)* 4.

Show that the geometric distribution is an exponential family distribution. Explicitly
specify b(y),n, T(y), and a(n). Also write ¢ in terms of 7. 3]

1C. Write the algorithm for value iteration and policy iteration for finite state MDP. 2
2
2A. Consider a classification problem in which the response variable y can take on any one of

the k values, soy € {1,2,...,k}. Derive a Generalized Linear Model (GLM) for modeling
this type of multinomial data. [5]
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9B. Consider a classification or regression problem where we would like to predict the value
of some random variable y as a function of z.

i) Write the general assumptions made to derive GLM for such problems.

ii) Using GLM construction, show that ordinary least square is a special case of GLM
family of models. i3

9C. Assume that the input feature z;, j = 1,...,n are discrete binary-valued variables such
that 2; € {0,1} and = = [x172,...,%q). For each training example @, agsume that
the output target variable y® € {0,1}. Now, consider the Naive Bayes model, given
the above context. This model can be parametrized by diw=0 = plz; = Ly = 0),
Gily=1 = P(z; = lly=1),and ¢ = p(y = 1). Write the expression for p(y = 1|z) in terms

of @jly=0, Pily=1 and ¢y. )

3A. Explain the concept of functional and geometric margin in reference to Support Vector
Machine (SVM). Pose an optimization problem in terms of geometric margin such that
its solution gives the optimal margin classifier. [5]

3B. In class we have seen how SVM can be used for classification. In this problem, we will
develop a modified algorithm, called the Support Vector Regression algorithm, which can
be used for regression with continuous valued labels y € R.
Suppose we are given a training set {(z®,yD);i = 1,...,m}, where z® e R and
y € R. We would like to find a hypothesis of the form hyp(x) = w7z + b with a small
value of w. Our optimization problem is

I g
mip gl

st. ¥ —wlz® —b<e i=1,...,m

wTe® +b—yP e, i=1,...,m
where € > 0 is a given, fixed value.

i) Write the Lagrangian for the given optimization problem. Use two sets of Lagrange
multipliers o; and 5;, corresponding to the two inequality constraints, so that the
Lagrangian would be written as L(w,b, e, B).

ii) Derive the dual optimization problem.

[3]

3C. Suppose you are given a hypothesis ho € H, and your goal is to determine whether
ho has generalization error within 7 > 0 of the best hypothesis, h* = arg minye4,€(h).
Specifically, we say that a hypothesis h is p-optimal if e(h) < e(h*) +n. Here, we wish to
answer the question: Given a hypothesis ho, is hg n-optimal?
Let § > 0 be some fixed constant, and consiter a finite hypothesis class H of size |H| = k.
For each h € H, let £(h) denote the training error of h with respect to some training set
of m IID examples, and let h = arg min,£(h) denote the hypothesis that minimizes
training error. Now, consider the following algorithm

et v 1= \/—zﬁlog%ﬁ‘

9. If & » &(h) + 9 + 27, then return NO.

; .
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3. If & < (h) +n — 2v, then return YES.

Show that if e(hg) < e(h*) + 1, then the probability that the algorithm returns NO is at
most 4.
2]

4A. Describe the following cross-validation techniques

i) Hold-out cross validation
ii) K-fold cross validation, and

iii) Leave-one out cross validation.
Also, for each technique write its suitability condition. [5]
4B. Consider a factor ana.lysis model defined according to
z e~ N(0,I)

e~ N(0,7)
T=p+Az+4¢

where z € RF is a latent random variable, u € R”, the matrix A € R™**, the diagonal
matrix U € R™", and ¢ and z are independent. The random variable z and z have a
joint Gaussian distribution

2]~ M

Compute i, and X.

(3]

4C. The EM algorithm is given by
Repeat until convergence{
(E-step) For each 1, set _ e
Qi(2®) := p(2D|2D; )
(M-step) Set
y (&) (). 6)
- T ke e
= argmazs 2" 1o .
5‘"g Z;Qt( ) g Qi(z@))

} :
Now, suppose #®) and 8®) are the parameters from two successive iterations of EM. Prove
that 1(§®) < (9*+D), which shows EM always monotonically improves the log-likelihood.

2l

5A. Consider a n dimensional feature vector z € R™. Derive the required relation to find the
top k principal components, and express z in terms of those principal components. 5]

5B. Describe different types of ambiguities associated with ICA. 3]

5C. Define a Markov Decision Process (MDP). 2]
1
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