Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, DECEMBER 2018

SUBJECT: ADVANCED CONTROL SYSTEMS [ELE 431]

REVISED CREDIT SYSTEM

Time:	3 Hours Date: 01 December 2018 Max. Mark	ks: 50	
Instruc	Instructions to Candidates:		
	 Answer ANY FIVE FULL questions. 		
	 Missing data may be suitably assumed. 		
	 Use of graph sheets may be allowed. 		
1A.	Differentiate between a linear system and a nonlinear system. (at least five points)	03	
1B.	Find the equilibrium point(s) and linearize the system about the equilibrium point(s). Comment on the stability of the equilibrium point(s) for the following system		
	$dx_1/dt = 2x_1 - x_1x_2$; $dx_2/dt = 2x_1^2 - x_2$.	05	
1C.	Explain any two types of nonlinearities present in the systems.	02	
2.	Derive the describing function of relay with hysteresis. Consider a linear system whose transfer function is given by $G(s) = 4/s(s+1)^2$. This system is connected in cascade with a relay with hysteresis nonlinearity. Take $h = 0.1 \& M = 1$. Using describing technique, predict i) the existence of the limit cycle ii) if yes, the stability of limit cycle and iii) the amplitude and frequency of the limit cycle.	10	
3A.	Draw the phase trajectory for the equation given below with initial conditions $(x, \dot{x}) = (0,1)$ using delta method (three quadrants)		
	$\ddot{x} + (1+x)\dot{x} - 2x + 0.5x^3 = 0$	05	
3B.	Show that the origin of $\dot{x}_1 = x_2$; $\dot{x}_2 = -x_1^3 - x_2^3$ is globally asymptotically stable using Lyapunov's method.	05	
4A.	What are the advantages and disadvantages of dynamic programming? Using Dynamic programming, obtain the optimal control policy $u^*(t)$ that minimizes the input $u(t)$ given to an RC series circuit with R=1 Ω and C=1F. J = $0.5 \int_0^\infty u^2 dt$	06	
4B.	Using Pontryagin's minimum principle, obtain the optimal control signal $u^*(t)$ for the system given by $\dot{x} = -x + u$, $x(0)=2$, $x(2)=0.5$ which minimizes $J = 0.5 \int_0^2 \dot{x}^2 dt$ with $u(t)$ unrestricted.	04	
5.	Derive the algebraic (or Matrix) Riccati equation for optimal controller design. Consider a satellite attitude control system whose state space model is given by $\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 20 \end{bmatrix} \mathbf{u} \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x};$		
	Design an optimal control law using Matrix Riccati equation in order to minimize $J=\int_0^\infty (x^2+u^2)dt$.	10	

- **6A.** For the satellite attitude control system given in Q5, design an optimal control law $u = -k(x_1+x_2)$ using Lyapunov's method to minimize $J = \int_0^\infty (x^2 + u^2) dt$. Take $x(0) = [1 \ 0]^T$ **06**
- 6B. What is the purpose of using Kalman filter? Why is it called an optimal filter? Explain the design procedure of a Kalman filter.04