Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY (A constituent Institution of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: APPLICATIONS OF DSP [ELE 4014] REVISED CREDIT SYSTEM

Time: 3 Hours Date: 29 Nov						r 2018		Max. Mark	(s: 50
Instructions to Candidates:									
	 Answer ALL the questions. 								
 Missing data may be suitably assumed. 									
1A.	State and prove the ene	ergy pre	eservatio	n prope	erty for 2	D disci	ete spa	ce Fourier transforms.	(02)
1B.	State and prove the continuous space Fourier transform of the rotated and translated image $f(A\bar{x} + \bar{b})$, where, A is a (2 × 2) rotation matrix and b is the spatial shift vector in 2D.								
1C.	Derive relevant expressions for 2D sampling and its effect in the frequency domain. Give the reconstruction formula using 2D-Sinc interpolators. (Hint: Derive 1D expressions and map them to 2D).								(04)
2A.	Given an image of size (3×3) as $f(x, y) = \begin{pmatrix} 128 & 212 & 255 \\ 54 & 62 & 124 \\ 140 & 152 & 156 \end{pmatrix}$. Determine the output image $g(x, y)$ using logarithmic transformation. Choose the weight for the log function as one.								(02)
2B.	Explain bit plane slicing technique of an image?								
	(i) What would be the effect on the histogram if we set to zero the higher-order bit plane?								
	(ii) What would be the effect of setting to zero the lower-order (up to four) bit planes on the histogram of an image in general?								
2C.	Derive an expression for 2D Laplacian operator. Extend it to derive an expression for 2D Laplacian-of-Gaussian (LoG) for a unit valued, zero mean and constant variance Gaussian. Draw waveforms for the given Gaussian and its first and second derivatives.								
3A.	Using (3×3) mask, perform weighted median filtering on the image given below:								
		18	22	33	25	32	24		
		34	128	24	172	26	23		
		22	19	32	31	28	26		
	Assuming mirror boundary conditions, obtain a (3×6) output image. (0								
3B.	(i) Explain the image degradation and restoration model.								
3A. 3B.	Draw waveforms for th Using (3 × 3) mask, per Assuming mirror boun (i) Explain the image de	e given form v 18 34 22 dary co	Gaussian veighted 22 128 19 onditions ion and r	n and it median 33 24 32 , obtain	s first an filtering 25 172 31 a (3 × 6 tion mod	d secor g on the 32 26 28) outpu el.	nd deriv image 24 23 26 it image	ratives. given below:	(05 (04

(04) (ii) Write short notes on impulse and Gaussian noise models.

3C. What is a bilateral filter? Explain. Mention its applications. (02) **4A.** (i) An (8×8) image f(x, y) has gray levels given by the following equation:

f(x, y) = |x - y|; x, y = 0, 1, 2, 3, 4, 5, 6, 7.

Find the output image obtained by applying a (3×3) mean filter on the image f(x, y); keep the border pixels unchanged.

(ii) Prove that the mean filter kernel behaves like a low-pass filter by deriving its Fourier transform. Assume that the filter kernel's hot spot (center pixel) is at the origin. (05)

- 4B. Write short notes on 2D Butterworth low pass filter. Is it possible to construct a band pass filter using high pass and low pass filters? If yes, how? If no, why? (02)
- **4C.** With relevant (3×3) filter masks, explain:

(i) Sobel (ii) High-boost, and (iii) Gaussian filtering

- **5A.** Derive expressions for 1D-DCT using DFTs. Use the same to write expression for 2D-DCT. List the uses of DCTs. (03)
- **5B.** Perform the hit-or-miss operation using the structuring elements B₁ and B₂ in Fig. (5B1) on the image given in Fig. (5B2).

5C. Explain the following morphological operations:(i) Dilation (ii) Erosion (iii) Closing (iv) Opening

(03)

(03)

(04)