Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Institution of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2018 SUBJECT: LINEAR ALGEBRA AND ITS APPLICATIONS TO ELECTRICAL ENGINEERING [ELE 4030]

REVISED CREDIT SYSTEM		
Time	: 3 Hours Date: 24 November 2018 Max. Ma	rks: 50
Instru	ictions to Candidates:	
	Answer ALL the questions.	
	 Missing data may be suitably assumed. 	
1A.	Define norm of a matrix with relevant axioms. Find the L_0 , L_1 , L_∞ , and $L_{Frobenius}$ norms of the following matrix.	
	$B = \begin{pmatrix} 1 & 4 & 0 \\ 4 & 12 & 4 \\ 0 & 4 & 0 \end{pmatrix}.$	(03)
1B.	Consider the linearly independent vectors $u, v \in \mathcal{R}^n$.	
	(i) State and prove the triangle inequality for u and v .	
	(ii) State and prove the Cauchy-Schwarz inequality for u and v .	
	Is it possible to achieve the equality criterion in both? If so, how?	(04)
1C.	Explain unit L_p ball with relevant contours/shapes drawn on Euclidean plane.	(03)
2A.	Given the linear system $Ax = b$.	
	What are well defined, under-defined, and over-defined systems? What is the condition for the system to be consistent?	(02)
2B.	Using Gauss-Jordan technique find the inverse of the following matrix:	
	$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$	(04)
20	Consider a symmetric matrix $A = \begin{pmatrix} 1 & 4 & 0 \\ 4 & 12 & 4 \end{pmatrix}$ Find its <i>LDU</i> factorization and comment on	

- Consider a symmetric matrix A =4]. Find its *LDU* factorization and comment on 2C. 12 4 0 4 0/the relation between U and L matrices. (04)
- Let *A* be a $(n \times n)$ symmetric matrix and *S* be the set of all $(n \times n)$ symmetric matrices. Show 3A. that *S* is a subspace of $M_{3\times 3}$, the vector space of (3×3) matrices. (02)
- What is the dimension of a subspace? Explain rank and nullity in terms of dimension of a 3B. respective subspace. (02)

3C. Describe the column space and null space of *A* and the complete solution to Ax = b. Given:

$$A = \begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4 \end{pmatrix}; \text{ and } b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}.$$
 (04)

- **3D.** State and explain any four properties of determinants.
- **4A.** Derive expressions for least squares-based line fitting technique for sparsely spaced data points. *(04)*
- **4B.** Find q_1 , q_2 , and q_3 (orthogonal vectors) as combinations of a, b, and c (independent vectors) in A. Then write A as QR.

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{pmatrix}$$
(04)

- **4C.** Prove or disprove the following statements:
 - (i) Orthogonal transformation of a vector preserves its length
 - (ii) Row space is orthogonal to null space
- **5A.** Find the possible eigen values and eigen vectors of a matrix obtained by AA^{T} . Given $A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ (04)
- **5B.** Prove or disprove that the symmetric matrices have real eigenvalues and orthogonal eigenvectors (02)
- **5C.** Given $A = \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix}$. Find A^5 using eigen value decomposition/diagonalization of *A*. (04)

(02)

(02)