Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, DECEMBER 2018

SUBJECT: MODERN POWER CONVETERS [ELE 4010]

REVISED CREDIT SYSTEM

		REVISED CREDIT STSTEM	
Time	e: 3 Hours	Date: 27, December 2018	Max. Marks: 50
Instructions to Candidates:			
	 Answer ALL the question 	IS.	
	 Missing data may be suita 	ably assumed.	
1A.	A non ideal buck convertor i	a modeled by including MOSEET on state w	naistance Ron an
14.	A non-ideal buck converter is modeled by including MOSFET on state resistance Ron, an inductor resistance R_L and a diode voltage drop V_D . Derive the expression for Vo/Vs that includes the above effects.		
1B.		y of a non-ideal buck converter. Given specif	(04)
10.	Vo=15V, Ro=5 Ω , Ron=0.016 Ω , R _L =0.06 Ω , V _D =0.9V.		(02)
1C.		el of a non-ideal buck boost converter having state resistance Ron. All other losses can be i	<u> </u>
2A.		a Cuk converter and derive an expression for one of the converter and capacitor charge sec balance.)	output voltage Vo. (02)
2B.	Design a Cuk converter for the following specifications: Vs=45V, VO=-15V, PO=25W, fs=150kHz.		
	(a) Maximum inductor ripple currents should not exceed 10% of its average value.		
	(b) Maximum voltage ripple across C1 should not exceed 5% of its average value.		value.
	(c) Maximum output voltage r	ipple is less than 1%.	(04)
2C.		a SEPIC converter and derive the expressions fitters C_1 and C_2 . (Apply inductor volt-sec balation	
3A.		c of a flyback DC-DC converter, draw suital ulating average load voltage, the necessary f	
3B.	Lx=70µH,R=20Ω,C=33µF and	e following parameters Vs=100V,N1/N2= N1 D=0/35.The switching frequency is 150kHz . Itage ripple (ii) the average, maximum and m	Determine (i) the
3C.		n and waveforms of a Push-Pull dc-dc conv age.	
4A.	Draw the circuit schematic a S and capacitor voltage of the ta	SLR dc-dc converter. Also sketch waveforms of nnk circuit for ωs<ωο.	f inductor current (03)

- **4B.** A series resonant dc dc converter has the following parameters: V_s =24V, Lr=1.2μH, Cr=12nF, f_s =1.5MHz and Ro=5Ω. Determine the output voltage.
- **4C.** A parallel resonant dc-dc converter supplying a resistive load of 10Ω from a source voltage of 100V. The switching frequency is 20% excess of the resonant frequency of 100 KHz, and characteristic impedance Zo = 5 Ω. Select suitable values of Lr and Cr for the converter and hence determine the output voltage. (04)

5A. ZCS converter has the following data: Vs=25V, V0=12V, Io=1A, Zo=12Ω, fs=200kHz. Determine time interval for each mode. (Assume fs=0.4fo). (04)
5B. Make a comparison between ZCS and ZVS switching schemes (02)
5C. Discuss the steps involved in developing the small signal model of a Buck converter using state space averaging technique (04)

(03)