Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

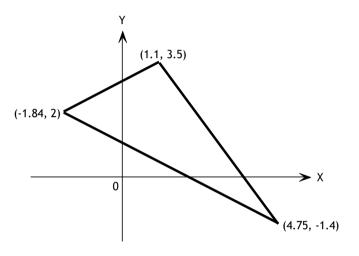
VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: SOFT COMPUTING [ELE 4026]

REVISED CREDIT SYSTEM

REVISED CREDIT STSTEM			
Time: 3 Hours Date: 24, November 2018		Max. Marks: 50	
Instructions to Candidates: ◆ Answer ALL the questions. ◆ Graph sheet shall be supplied, if required. ◆ Missing data may be suitably assumed.			
1A.	Define the following terms u (i) support (ii) al	sed in fuzzy system: pha-cut (iii) convex (iv) hei	ght (04)
1B.			
1C.	$R_{1} = SPEED $ $R_{1} = 0.000 $ $R_{2} = 0.000 $	peed and power $b' = \mu_B(x) = 0.79$. Calculate the follow class with $\lambda = 0.2$ PRADE class with $\alpha = 0.5$	POWER 100 500 $T_1 0.6 0.1$ $T_2 0.4 0.8$ $T_3 0.5 1.0$ (03) wing:
	(iii) Compliments of	'a' and 'b' by YAGER class with <i>w</i> = 3	(03)
2A.	Two linguistic variables A and B are defined as given below:		
	$A = \left\{ \frac{0.5}{X_1} + \frac{1.0}{X_2} + \frac{0.6}{X_3} \right\} B = \left\{ \frac{1.0}{Y_1} + \frac{0.4}{Y_2} \right\} \text{and} \ B' = \left\{ \frac{0.8}{Y_1} + \frac{0.5}{Y_2} \right\}$		
	Given fuzzy inference,		

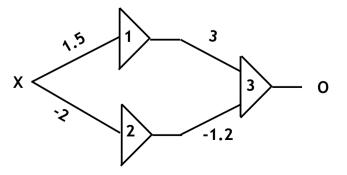
Y is B' IF X is A THEN Y is B X is A'


Find A' using (i) Lukasiewicz implication (ii) Zadeh implication.

(03)

- **2B.** A fuzzy controller is to be designed to estimate change in voltage required for a voltage regulator to maintain constant voltage across its terminals. The two inputs to Fuzzy controller are error and change in error, the output being change in voltage. All parameters are defined in universe of discourse [-1 to +1]. The design shall include
 - (i) Linguistic values and respective equations for triangular membership functions for all linguistic variables considered
 - (ii) List of IF-THEN rules required

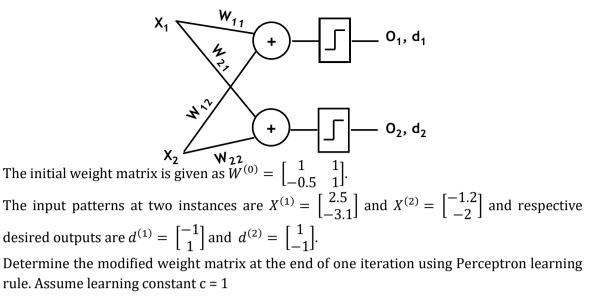
For sample input of error = - 0.8 and change in error = 0.5, calculate crisp value of change in voltage using weighted average method of defuzzification.


3A. Design and sketch a discrete neural network such that any point inside the triangle shown in figure is the solution.

3B. A neural network has one layer consisting of two neurons. The available information of the network are $W = \begin{bmatrix} 2 & -1 \\ 0.5 & 0.75 \end{bmatrix}$ Bias = $\begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$ and $O = \begin{bmatrix} 0.28 \\ -0.73 \end{bmatrix}$

Biasing input = -1. The activation function is bipolar continuous with λ = 1.25. Sketch the neural network and determine the input matrix X. (03)

- **3C.** Design a neural network for the following classification:
 $P_1(0.8, 0.9), P_2(2.1, 3.5) \text{ and } P_3(-2, -1.3)$ belongs to Class A (output = -1)
 $P_4(2.1, 0.9) \text{ and } P_5(-2, 0.5)$ belongs to Class B (output = +1)
Sketch the designed network and indicate respective synaptic weights and biasing weights.(03)
- **4A.** In the network shown in figure below, Neurons 1 and 2 are bipolar sigmoidal with $\lambda = 1.25$ and neuron 3 has an activation function 0= f(net) = net. For a given input X = 0.7, the desired output is 3. Modify all weights using back propagation algorithm for one iteration assuming learning constant as 0.8.



(05)

(07)

(04)

4B. A two input - two output neural network is as shown in figure.

5A. A single layer Hopfield feedback network is required to store the following bit patterns:

$$S_1 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \quad S_2 = \begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix} \text{ and } S_3 = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$$

Calculate the weight matrix required and draw the neural network indicating all weights on the diagram. Obtain energy level for each pattern.

5B. Genetic algorithm is employed to determine minimum value of given the function $y = e^{-(x-3)^2}$ where 1 < x < 4 using 5 bit binary string. The initial population given are $[1\ 0\ 1\ 0\ 1]$, $[0\ 0\ 1\ 1\ 0]$, $[1\ 1\ 1\ 0\ 0]$, $[0\ 1\ 0\ 1\ 1]$. For one iteration, obtain

(i) ranking of chromosomes (ii) crossover (iii) mutation and (iv) replacement. (06)

(05)

(04)