Reg. No.					

SEVENTH SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2018/JANUARY 2019

SUBJECT: ADVANCED EMBEDDED SYSTEM DESIGN (ECE - 4001)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Assume the features of an embedded system are given in the form of technical tasks *T0*, *T1*, *T2*, *T3*, *T4* and *T5*. The flow of execution of these tasks is shown in **Figure 1A**. The execution time(T) and power consumption(P) of each task by various processing elements is given in **Table 1A**.
 - i. Explain the concept of co-synthesis in a typical embedded system design flow.
 - ii. Find suitable application mapping to design the system with power consumption less than 30 mWatts by drawing activity scheduling graph.
 - iii. Find suitable application mapping to design the system with total processing time less than 20msec by drawing activity scheduling graph.
- 1B. With the help of transition diagram, explain the power saving modes of PSoC 4.

5+5

- 2A. Define a C function for PSoC4200M that can be used
 - (a). just before entering into critical section of the code.
 - (b). to set ISR address in vector table for IRQ0 to IRQ31.
 - (c). to set the priority for exceptions IRQ0 to IRQ31.
 - (d). at the exit of critical section of the code.
- 2B. Write the special features those Digital signal processor should have over other data processing elements.
- 2C. Draw the block diagram of PSoC 4200M's clocking system and explain each block.

4+3+3

- 3A. In ARM Cortex-M0, While CPU is executing the main program, assume the content of CPU registers is as shown in **Table 3A** Now if IRQ3 interrupt occurs, what will be the content in below registers immediately after entering into the corresponding interrupt handler?
 - i. LR ii. xPSR iii. SP
- iv. Content in 0x20003FD4 addressed location
- 3B. In context of PSoC 4 interrupts, explain the use of following
 - i. <instance_name>_Start() and <instance_name>_StartEx() API routines
 - ii. CyEnterCriticalSection() API routine
 - iii. Bootoadable_Load() API routine

ECE – 4001 Page 1 of 3

3C. Assume the schematic in *.Cysch* file of PSoC creator is as shown in **Figure 3C**. *Pin_Start_Bootloader* is configured to **Resistive Pull Up** mode with **Falling edge** interrupt and connected to P0[7] of CY8CKIT-044. *Pin_LED* is configured in **strong drive mode**. Bootloadable is linked to a Bootloader, which is configured to communicate with Host using I2C. Rest all are default.

Fill *main.c* file of PSoC Creator with appropriate code to do the following:

CPU should toggle *Pin_LED* continuously (with a period of 1 sec) as long as the switch on CY8CKIT-044 is not pressed. When switch pressed, CPU Should start executing Bootloader and it should remain doing the same until HOST update flash with new application.

4+3+3

- 4A. With neat diagram, explain briefly the drive modes of PSoC 4200M GPIOs
- 4B. Write steps to configure PSoC 4200M's watch dog timer for periodic interrupt generation
- 4C. Write the default API routines of PSoC creator to
 - (a). generate delay in milliseconds
- (b). drive processor into hibernate mode

(c). find the reset reason

- (d). unfreeze GPIO pins
- (e). enable global interrupts
- (f). set IMO frequency

4+3+3

- 5A. Assume the schematic in .cysch file of PSoC Creator is as shown in Figure 5A.
 - i. Choose values of R1 and R2 to give an opamp gain of 11
 - ii. Write C code to convert analog input to digital and send the result to PC using UART.
- 5B. Draw the block diagram of PSoC4 UDB and explain the advantage of data-path availability in it. List out the methods available to embed functionality into PLDs and Datapath of PSoC UDBs.
- 5C. Explain the configuration of Instruction, Registers, Input and Output windows of DP element of PSoC Creator's UDB Editor while implementing the state diagram shown in **Fig.5.C**.

4+3+3

Table 1A

	GPP		DSP		FPGA		ASIC	
Task	T(ms)	P(mw)	T(ms)	P(mw)	T(ms)	P(mw)	T(ms)	P(mw)
T0	24.6	2.1	8.4	9.4	3.2	17.2	1.8	26.2
<i>T1</i>	7.2	9.7	9.7	7.2	17.6	2.8	14.8	7.0
T2	6.4	16.4	7.0	14.8	26.4	1.2	22.7	2.2
<i>T3</i>	26.2	1.8	18.4	2.4	9.4	8.4	8.8	8.8
T4	16.4	6.4	17.2	3.2	2.2	22.7	2.1	24.6
T5	6.4	16.4	1.2	26.4	2.8	17.6	2.4	18.4

T(ms)-Time taken by each task to execute(in milli seconds).

P(mw)- Power consuming by each task (in milli Watts).

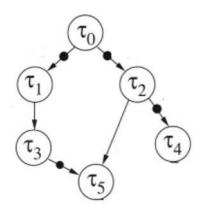


Figure 1A

ECE – 4001 Page 2 of 3

Table 3A

R0=0x00000000	R1=0x000000C0	R2=0xE000E100
R3=0x00000001	R12=0xE000E400	LR=0x000001F1
PC=0x000001F0	xPSR=0x01000000	SP=MSP=0x20003FE4

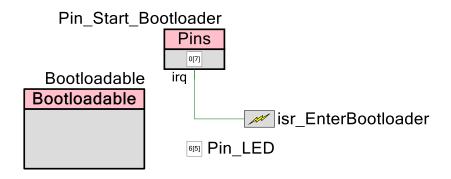


Figure 3C

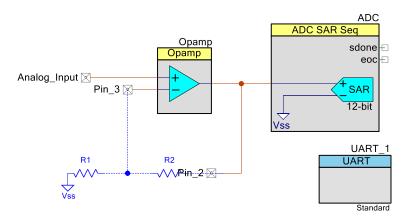


Figure 5A

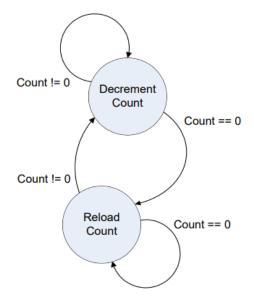


Figure 5C

ECE – 4001 Page 3 of 3