Reg. No.					
11cg. 110.					

SEVENTH SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2018/ JANUARY 2019

SUBJECT: RF & MICROWAVE ENGINEERING (ECE - 4102)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Discuss any three applications of quarter wave transmission Line.
- 1B. A 50 Ohm lossless line connects a signal of 100 KHz to a load of 100 Ohm. The load power is 100mW calculate:
 - (a) Voltage reflection coefficient
 - (b) VSWR
 - (c) Position of first V_{min} and V_{max}
 - (d) Impedance at V_{min} and V_{max} and values of V_{min} and V_{max}
- 1C. Measurement on a terminated transmission line gave the following results: VSWR=3.2, Location of first $V_{min} = 0.237\lambda$ from the load, Characteristic impedance=50 Ohms. Calculate the terminating impedance with and without using smith chart.

(5+3+2)

- 2A. Determine the electric and magnetic field components for the rectangular waveguide for TE waves propagation.
- 2B. Show that $\lambda = \frac{\overline{\lambda} \cdot \lambda_c}{\sqrt{\overline{\lambda^2} + \lambda_c^2}}$ for the rectangular waveguide.

Where, λ = free space wavelength, λ_c = cutoff wavelength and $\overline{\lambda}$ = waveguide wavelength

2C. Define wave impedance in terms of electric and magnetic fields looking towards positive and negative directions of a rectangular coordinate system.

(5+3+2)

- 3A. Describe the working of 4 port Hybrid Tee with all ports perfectly matched. Solve for its S matrix. Mention two applications of it.
- 3B. A 3 port circulator with Insertion loss = 1dB, VSWR = 1.5 and Isolation = 30dB. Find its S Matrix.
- 3C. With necessary diagrams and S matrix, explain working of an Isolator.

(5+3+2)

4A. From the fundamentals and necessary diagrams, derive the expression for L_{opt}, efficiency and voltage gain in a two cavity klystron amplifier.

ECE – 4102 Page 1 of 2

- 4B. Draw the diagram of a TWT amplifier and explain its working.
- 4C. Explain the working of cylindrical magnetron.

(5+3+2)

- 5A. Starting from fundamentals, derive the generalized voltage and current equations at any point on a two wire transmission line in trigonometric form.
- 5B. Discuss any two limitations of vacuum tubes at high frequency with proper justification.
- 5C. Explain the working of reflex klystron.

(5+3+2)

ECE – 4102 Page 2 of 2