Reg. No.

IANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SEVENTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, DECEMBER – 2018

SUBJECT: REAL TIME EMBEDDED SYSTEMS [ICE 4003]

Time: 3 Hours

MAX. MARKS: 50

(3)

(3)

Instructions to Candidates: Answer ALL the questions. Missing data may be suitably assumed.

1A. Explain the basic model of real time systems with block diagram.

- **1B.** Classify real time tasks with examples for each.
- 1C. Consider 6 processes P_1 , P_2 , P_3 , P_4 , P_5 and P_6 arriving in ready queue at time 5, 4, 3, 1, 2 and 6 respectively. If the burst time requirements are 5, 6, 7, 9, 2 and 3 respectively. Use Round Robin scheduling method to find the average waiting time, average turn around time and response time. Assume higher values indicate higher priorities and Quantum Time = 3.
- 2A. Explain Foreground background scheduler. Consider a Real Time system in which the tasks are scheduled using Foreground Background scheduler. There is only one periodic foreground task $T_i = (e_i = 50ms, p_i = 100ms, \Phi_i = 0, d_i = 100ms)$ and the background task $T_b = (e_b = 1000ms)$. Suppose an overhead of 1ms on account of every context switch is to be taken into account, compute the completion time of T_b . (5)
- **2B.** A cyclic scheduler is to be used to run the following set of periodic tasks on a processor: $T_1 = (e_1 = 1, p_1 = 4), T_2 = (e_2 = 1, p_2 = 5), T_3 = (e_3 = 1, p_3 = 20), T_4 = (e_4 = 2, p_4 = 20).$ Select an appropriate frame size. (2)
- **2C.** Compute the different types of inversions that each task might have to undergo for the task graph shown in **Fig.2C**. Assume tasks have been sorted in order of priority. Task T_1 has highest priority and task T_6 has least priority. (3)

3A.	Compare centralized clock synchronization and distributed clock synchronization schemes with relevant figures.	(4)
3B.	Explain Deadlock and chain blocking conditions with suitable examples.	(4)
3C.	List any two causes of failures in the hardware design.	(2)
4A.	Describe static pairing and N modular redundancy with relevant figures.	(4)
4B.	Explain RETHER protocol.	(4)
4C.	List the disadvantages of assembly language based development.	(2)
5A.	Explain host target and preemption point approach in Operating systems.	(4)
5B.	Write a short note on VxWorks and QNX operating system.	(4)
5C.	Define Task preemption time and static priority level.	(2)
