

SEVENTH SEMESTER B. TECH. (INSTRUMENTATION AND CONTROL ENGG.)

END SEMESTER DEGREE EXAMINATIONS, DECEMBER – 2018

SUBJECT: VLSI DESIGN [ICE 4004]

TIME: 3 HOURS

MAX. MARKS:50

3 4

3

4

Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data may be suitably assumed.

1A	Compare between CMOS and bipolar technologies.
1 B	Illustrate the p-well process of CMOS fabrication with figures.

- **1C** Explain the working of an nMOS inverter with its transfer characteristics.
- 2A An nFET pass transistor has $\beta_n=1.50 \text{ mA/V}^2$ with a process that uses $V_{DD}=5 \text{ V}$ and $V_{Tn}=0.5 \text{ V}$. A 3 logic 1 voltage $V_{in}=V_{DD}$ is applied to the input side, and the output node has a total capacitance of $C_{OUT}=84$ fF. The output capacitor is initially uncharged. (i) Find the time constant for the logic 1 charging event. (ii) Calculate the rise time in units of picoseconds. (iii) The input is switched to $V_{in}=0 \text{ V}$. Calculate the fall time.
- **2B** Derive the expression for the mid-point voltage for a 2-input NOR gate.
- **2C** A CMOS NOR2 gate is designed using nFETs with a value of βn . The pFETs are both described 3 by $\beta p=2.2\beta n$. Find the value of V_M if $V_{DD}=3.3$ V, $V_{Tn}=0.65$ V and $V_{Tp}=-0.8$ V.
- 3A
3BDraw the RC equivalent circuit for a 2-input XOR gate.4
3
33BCalculate the path effort for the following circuits:3for for for for for for for for for the following circuits:33CBriefly explain the different structured design techniques.3
- **4A**What is the smallest size of ROM that is needed to implement the following:3(a) 4-to-1 MUX (b) 3-to-8 decoder (c) 2-bit full adder3

4B Find a minimum-row PLA table to implement the following three functions:

$$f(A, B, C, D) = \sum m(2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$$

$$g(A, B, C, D) = \sum m(2, 3, 5, 6, 7, 10, 11, 14, 15)$$

$$h(A, B, C, D) = \sum m(6, 7, 8, 9, 13, 14, 15).$$

- 4C Implement the function f = a'bc + b'c + ab using an FPGA with MUX-based programmable 3 logic blocks
- 5A Briefly explain the different types of FPGA architectures.5B Describe the different types of logical faults encountered in a digital system.
- 5D Describe the different types of logical ratits encountered in a digital system.
 5C Explain different elements that yield to the production cost of an integrated circuit.

3

4

3