

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SEVENTH SEMESTER B. TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER DEGREE EXAMINATIONS, NOVEMBER - 2018

SUBJECT: VLSI DESIGN [ICE-4004]

TIME: 3 HOURS

MAX. MARKS: 50

3

4

3

3

4

3

Instructions to candidates				
•	Answer ALL questions.			
•	Missing data may be suitably assumed.			

- **1A** Explain the working of enhancement mode and depletion mode transistors.
- **1B** Illustrate the n-well process of CMOS fabrication with diagrams.
- 1C Describe the working of a CMOS inverter with its regions of operation.
- 2A A pFET pass transistor has an aspect ratio of 8 in a process where $K_p = 60 \mu A/V^2$, $V_{DD} = 3.3 V$ and $V_{Tp} = -0.8 V$. At time t = 0, the output capacitor $C_{out} = 50$ fF is charged to a voltage of V_{DD} while the input is switched to $V_{in} = 0V$. (a) Find the fall time at the output node. (b) The input is switched back to V_{DD} . Find the rise time needed to drive the voltage back up to its high value.
- **2B** Derive the expression for the mid-point voltage for a 2-input NAND gate.
- **2C** A CMOS NAND2 is designed using identical nFETs with a value of $\beta_n = 2\beta_p$; the pFETs are the 4 same size. The power supply is chosen to be $V_{DD} = 5V$, and the device threshold voltages are $V_{Tn}=0.6$ V and $V_{Tp} = -0.7$ V. Find the midpoint voltage V_M . What would be the midpoint voltage for an inverter made with the same β specification?
- **3A** Sketch the layout of a pseudo-nMOS gate that implements the function:

$$f = \overline{A(B+C+D) + E.F.G}$$

3B Estimate the minimum delay of the path from A to B:

3C Illustrate the generalized system design flow in implementing an IC with a flowchart.

4A The following state table is implemented using a ROM and two D flip-flops (falling edge 3 triggered):

	Q,+Q,+		Z	
$Q_1 Q_2$	X = 0	X = 1	X = 0	<i>X</i> = 1
00	01	10	0	1
01	10	00	1	1
10	00	01	1	0

Draw the block diagram and the ROM truth table.

4B Find a minimum-row PLA to implement the following three functions:

$$f(A, B, C, D) = \sum m(3,6,7,11,15)$$
$$g(A, B, C, D) = \sum m(1,3,4,7,9,13)$$
$$h(A, B, C, D) = \sum m(4,6,8,10,11,12,14,15)$$

- 4C Implement the function f = a'bc + b'c + ab using an FPGA with programmable logic blocks 3 consisting of LUT4.
- 5A Classify the different types of ASICs.
 5B Briefly explain the different types of electrical faults encountered in a digital system.
 5C Explain the IDDQ testing technique for fabrication defects.
 3

ICE 4004

4