

MANIPAL

(A constituent unit of MAHE, Manipal)

VII SEMESTER B. TECH (MECHANICAL/IP ENGG.) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: DESIGN OF THERMAL POWER PLANT SYSTEMS [MME 4010]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

05

05

05

Instructions to Candidates:

Answer **ALL** the questions.

- Missing data may be suitably assumed.
- Use of heat exchanger data sheet, thermodynamics and heat transfer data book are permitted
- **1A.** Sketch and explain natural, forced and assisted draught cooling towers. Also define various energy parameters related to cooling tower.
- **1B.** E-type shell and tube heat exchanger is to be designed with the following specifications:

Shell side	=	Engine oil, 10000 kg/h, 100°C to 60°C					
Tube side	=	Ethylene glycol, 56417 kg/h, 20°C, 1.5 m/s, 1" OD,					
		1¼" Square pitch, 11 BWG					
Tube side coefficient	=	47.2 W/m ² K					
Material	=	Nickel steel (20 % Ni)					
Flow condition	=	Single shell pass / Single tube pass					
Allowable maximum length is 50 m. Baffle spacing is 0.5 times shell diameter.							
Neglect boundary layer effect.							
Is the proposed design is feasible?							

- **2A.** With a neat sketch explain the furnace based natural loop steam generating unit taking into account various heat exchangers.
- 2B. Calculate overall heat transfer coefficient, outlet temperatures and air side pressure drop for the heat exchanger with following dimensions and flow conditions:
 Hot side = Exhaust gas at 30 kg/s, 600°C, Frontal area = 2 m x 2 m Cold side = Air at 30 kg/s, 200°C, Frontal area = 2 m x 4 m The fins used are plain fin of 19.86 type on both sides. The plate thickness is 0.4 mm with thermal conductivity 100 W/mK. Take Ke = 0.2 and Kc = 1.4.
- 3A. Explain with neat sketches the different zones of condensation in horizontal tube. 05
- **3B.** Find The change in length of DPHX when the two inner tubes are inside finned and unfinned with following specifications:

Annulus size	=	3 ¹ ⁄ ₂ " nominal, 40 schedule				
Inner tube	=	1" nominal, 80 schedule				
Material	=	Carbon steel (0.5 % C)				
Tube side	=	Engine oil, 80°C to 40°C, 2 kg/s				
Annulus side	=	Water, 20°C to 60°C				
Fin height	=	4 mm				
Fin thickness	=	1 mm				
Fin number	=	30				
Assume overal	l fin	efficiency as 0.85				
Nealect fouling	res	istance				

- **4A.** With schematic, explain the hot fluid series/cold fluid parallel and cold fluid series/ hot fluid parallel arrangements in double pipe heat exchanger. State its necessity. **05**
- **4B.** A Condenser is to be designed to condense 163 kg/h of steam at atmospheric pressure. A staggered triangular array of 100, 10 mm outside diameter tubes are available for the design and the wall temperature of the tube maintained at 98°C.
 - (a) Estimate the length of the tube required if the condenser is to be installed in the horizontal position.
 - (b) If the above condenser is by mistake installed in the vertical position, will there be any change in the condensation rate?

1st and 11th row 7 tubes, 2nd and 10th row 8 tubes 3rd and 9th row 9 tubes, 4th, 6th and 8th row 10 tubes, 5th and 7th row 11 tubes Properties of saturated water and steam are: $p_l = 961 \text{kg/m}^3$ $k_l = 0.6804 \text{ W/mK}$ $\mu_l = 2.81 \times 10^{-4} \text{ Pa.s}$ $h_{fa} = 2257 \text{ kJ/kg}$

5A. In a cooling tower performance test, the following readings are noted in case of Forced mode.

Water entry temperature	=	45°C	DBT at entry	=	33°C
Water exit temperature	=	40°C	DBT at exit	=	37°C
WBT at entry	=	25°C	Water flow rate	=	10 lpm
WBT at exit	=	30°C	Duration of test	=	300 s

Find:

(a) Cooling tower duty

(b) Cooling tower efficiency

(c) Mass flow rate of air

- (d) Rate of make-up water
- 5B. Fired heater is used to heat the process fluid having flow rate of 200000 kg/h from 200°C to 350°C. Assume the stack gas temperature to be 100°C more than the process fluid inlet temperature. Propane (M= 44.1) is used as the fuel with 15 % excess air. Take radiation loss as 4 % and other losses (excluding dry gas loss) as 10 %. Specific heat of process fluid is 2500 J/kgK. Specific heat of CO₂, H₂O, O₂ and N₂ are 1.055, 2.014, 0.997 and 1.057 kJ/kg K respectively. Consider 55 % load in radiant section. Allowable maximum radiation heat flux is 30 kW/m². Tube diameter = 210 mm, pitch = 250 mm, H/D = 1.5. Find:
 (a) Furnace efficiency
 (b) Radiant zone load
 - (c) Height and diameter of the furnace, (d) Number of tubes in radiant zone

05

05

05

05