Reg. No.						
iteg. no.						

VII SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2018

SUBJECT: Robot Dynamics and Control [MTE 4007]

REVISED CREDIT SYSTEM (29/11/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Data not provided may be suitably assumed

1A.	Explain the features of any one of the controllers used in robotic systems for a suitable application.		
1 B .	State Lagrangian equation of motion for a robotic system and explain each parameters in detail with their properties and dimensions.		
1C.	2. Define degree of freedom? Calculate degrees of freedom of a rolling coin on a flat surface.		
2.	Formulate equation of motion for a two-degree-of-freedom system shown in Fig.Q.2A using energy method. Linearize the system and propose the best suitable controller for it. (Where <i>F</i> and τ are external force and torque corresponding to generalized variables <i>x</i> and Θ respectively.)	10	
3A.	Calculate linear and angular velocities of a 2 wheeled planar mobile robot, if wheel angular velocities are w_l and w_r . Assume distance between wheels is 2b and dimensions of the robot platform are L x L.	02	

