

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES I SEMESTER B.Sc. (Applied Sciences) - in Engg. END-SEMESTER THEORY EXAMINATION- APRIL / MAY 2019 MATHEMATICS - 1 [IMA 111]

Marks: 100 Duration: 180 mins.

Answer ANY FIVE full Questions.
Missing data, if any, may be suitably assumed

- If $y = (sin^{-1}x)^2$, then prove that
 - (1 x^2) y_{n+2} (2n + 1) $xy_{n+1} + n^2y_n = 0$. Hence find y(0).
 - Find the length of one arc of the cycloid $x = a(\theta \sin\theta)$, $y = a(1 \cos\theta)^{(7)}$
 - Obtain reduction formula for $\int sin^m x cos^n x dx$ where m, n > 0
- Find the evolute of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
 - Find the area of a loop of the curve $x^3 + y^3 = 3axy$ (7)
 - C) Evaluate: (6)
 - i. $\int_0^{2a} x^3 (2ax x^2)^{\frac{3}{2}} dx$
 - ii. $\int_0^\infty \frac{x^2}{(1+x^2)^{\frac{7}{2}}} dx$
- Show that $\frac{v-u}{1+v^2} < tan^{-1}v tan^{-1}u < \frac{v-u}{1+v^2}$ whenever 0 < u < v. Hence deduce $\frac{\pi}{4} + \frac{3}{25} < tan^{-1}\left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}$
 - Find the area common to the cardioids $r = a(1 + cos\theta)$ and $r = a(1 cos\theta)$
 - Trace the curve $y^2(a-x) = x^2(a+x)$ with explanation. (6)
- Expand $\log (1 + \sin x)$ in powers of x up to term containing x^4

A)

Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{(n!)^2 x^n}{(2n)!}$$

- Trace the curve whose parametric equation is $x = a \cos^3 t$, $y = b \sin^3 t$ (6)
- Find the angle of intersection of the curves $r = 3\cos\theta$ and $r = 1 + \cos\theta$ (7)
 - Find the equation of the plane that passing through the line of intersection of 2x + y z = 3 and 5x 3y + 4z + 9 = 0 and parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$
 - Trace the curve $r = a \sin 3\theta$ with explanation. (6)
- Find the radius of curvature for $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)^{(7)}$
 - Find the image of the point (2, -3, 4) with respect to the plane 4x + 2y 4z + 3 = 0
 - Test the convergence of the series $x \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} \frac{x^4}{\sqrt{4}} + \cdots$ (6)
- Find the nth derivative of the following functions: (7)
 - i. $x^{n-1}logx$ ii. $\frac{3}{(x+1)(2x-1)}$
 - Find the magnitude and the equation shortest distance between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$

Evaluate the following:

i.
$$\lim_{x \to 0} \left[\frac{1}{x^2} - \frac{1}{x \tan x} \right]$$

ii.
$$\lim_{x \to 0} (1 + \sin x)^{\cot x}$$

State Cauchy's mean value theorem and verify the same for the functions (7)

A)
$$f(x) = x^3 - 3x^2 + 2x$$
 and $g(x) = x^3 - 5x^2 + 6x$ in $\left(0, \frac{1}{x}\right)$

\ ` 2/

- Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + z = 3 as great circle.
- Test the convergence of the series $\frac{1!2}{1} + \frac{2!4}{4} + \frac{3!8}{27} + \frac{4!16}{256} + \cdots \infty$.

----End-----