Question Paper

Exam Date & Time: 03-May-2019 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENES II SEMESTER B.Sc.(Applied Sciences) IN ENGINEERING END SEMESTER THEORY EXAMINATION-APRIL/MAY 2019

Data Structures [CS 123]

Marks: 100

Duration: 180 mins.

Answer ANY FIVE FULL Questions Missing data may be suitably assumed.

- What is space and time complexity? Explain. Calculate the time complexity ⁽¹⁰⁾ for the following function using step count table and represent using Big-oh
 A) notation
 - ^{A)} notation.

void funct(int m, int n)

- { int i,j; for (i=0;i< m;i++) for (j=0;j< n;j++) cout< < i*j; }
- B) What is a recursive function? Give the properties of the same. Give a (10) comparison of recursive and iterative algorithms.
- ²⁾ Give the algorithm for evaluation of Postfix Expression using Stack. Show (10) the steps in evaluating the expression: ABC*D/+EF*-
 - B) Give the algorithm for converting an Infix expression to postfix using stack. ⁽¹⁰⁾
 Show the working of the algorithm by considering the expression A * (B + C)
 * D, showing the stack contents and output after each token.
- What is an inline function? How do you make a function inline? Explain with ⁽¹⁰⁾ syntax and example. What are advantages and disadvantages of inline function over normal functions?
- ^{B)} Implement the Insert, Delete and Display functions of a linear queue. ⁽¹⁰⁾
- ⁴⁾ Give the algorithms for insertion and deletion into a Circular Queue. ⁽¹⁰⁾
 - A)
 - B) Write the algorithm/functions to implement the following operations on a (10) singly linked list:
 i) InsertFront(int x)
 - ii) DeleteFront()
- ⁵⁾ What is an expression tree? Write a function to create a binary tree for the ⁽¹⁰⁾

- A) given postfix expression.
- B) (10) What is the advantage of doubly linked list over singly linked list? Give the functions for the following operations on doubly linked list: i) InsertLast(int x) ii) Delete(int x) 6) (10) With an example for each, explain the following terms: i) Strictly Binary tree A) ii) Binary Search tree iii) Level of a tree iv) Almost Complete binary tree v) Indegree of node B) (10)Write a function to display the elements of a binary tree using level order traversal. Explain the algorithm with help of an example. 7) Construct a Binary search tree for the list of alphabets given below by taking ⁽¹⁰⁾ the first element as root: A) J, R, D, G, T, E, M, H, P, A, F, Q Also write down the output of inorder and preorder traversal for the above tree. B) Give the function for Quick Sort algorithm. Also mention the time complexity ⁽¹⁰⁾ of Ouick Sort. Trace the function for the following input values:
 - 45, 26, 27, 70, 14, 90
- What are different ways of representing a graph? Explain with an example (10) for each.
 - ^{B)} Explain with an example, the different storage representations for a binary ⁽¹⁰⁾ tree.

-----End-----