Question Paper

Exam Date & Time: 08-May-2019 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTER FOR APPLIED SCIENCES III SEMESTER B.Sc. (Applied Sciences) IN ENGINEERING END SEMESTER DEGREE EXAMINATION-APRIL/MAY 2019 SWITCHING CIRCUITS AND LOGIC DESIGN [ICS 232]

a

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

1)	A)	i	Draw the diagram of full adder. Write the truth table for full adder and derive the equations for S_i and C_{i+1} .	(5)
		ii	Write Verilog code to convert an n-bit gray code into equivalent binary code.	(5)
	B)		Write structural verilog code for 16-bit ripple carry adder constructed using 4-bit ripple carry adders.	(10)
2)	A)		Derive the equations for g_i , p_i , c_{i+1} in carry look-ahead adder. With a neat diagram, explain the construction of 16-bit hierarchical carry look-ahead adder (CLA) using 4-bit CLA with ripple carry between blocks.	(10)
	B)		Using tabular method, find the minimum cost SOP expression for the function $f(x1,x2,x3,x4) = \Sigma m$ (0,2,4,5,7,8,9,15).	(10)
3)	A)	i II	Consider the function $f(a,b,c,d) = \sum m(0, 4, 5, 6, 9, 10, 11, 15)$. Use functional decomposition to find the minimal SOP expression for f.	(4)
			Using k-map, determine the minimum-cost SOP and POS expressions for the function f (x1, x2, x3, x4) = $\sum m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9)$.	(6)
	B)	i	Describe the terms implicant, prime implicant, essential prime implicant and cover.	(4)
		ii	Consider the function $f(x1, x2, x3, x4) = \sum m(0, 2, 4, 5, 10, 11, 13, 15)$. Using k-map, find the prime implicants, essential prime implicants and minimal cover.	(6)
4)	A)		Explain 4-bit Johnson counter with a neat diagram. Also, tabulate the flip flop outputs and the AND gates required for decoding timing signals.	(8)
	B)		Design a 4-bit bi-directional shift register for the following operations using	(8)

³⁾ Design a 4-bit bi-directional shift register for the following operations using ⁽⁸⁾ D flip flops and MUXs.

No change
Arithmetic right
shift
Logical left shift
Parallel load

C)		Draw the design of 4-bit binary ripple counter.	(4)
A) B)		Write Verilog code for 4-bit synchronous down counter designed using T flip flops.	(6)
		Draw the logic diagram of JK flip flop. Write its characteristic table, characteristic equation and excitation table.	(6)
C)		Design a sequential circuit for a three-bit binary counter. Using T flip flops, draw the logic diagram of the sequential circuit.	(8)
A) B)		Write the boolean laws for the following: i) Distributive. ii) Demorgan. iii) Absorption. iv) Combining.	(8)
		Using algebraic manipulation, simplify the following expressions. i) A'B+A'B'C'D'+ABCD' ii) g(a,b,c,d)=a'c'd'+a'bd+bcd+acd'+b'cd' iii) f= (x1'+x2+x3).(x1'+x2'+x4').(x1'+x3+x4) iv) f= x2x3'x4+x1x3x4+x1x2'x4	(12)
A)	i	A combinational circuit is specified by the following three functions: F1=X'Y'Z'+XZ $F2=XY'Z'+X'Y$ $F3=X'Y'Z+XY$ Design a circuit for F1, F2 and F3 using a decoder and other gates.	(4)
	ii	Draw the logic circuit for the following using gates: a) 4-to-1 MUX. b) 2-to-4 decoder	(6)
B)	i	Implement three-input majority function using 4-to-1 MUX.	(3)
	ï	Implement three-input XOR function using only, a) 2-to-1 MUX. b) 4-to-1 MUX.	(7)
		Discuss the applications of transmission gates with neat diagrams.	(6)
A)	i ii	Define a tri-state buffer. Write its truth table.	(2)
B)	i	Explain the following with a neat diagram. CMOS realization of a NOT gate.	(3)
	ii	Explain the following with a neat diagram. CMOS realization of a NAND gate.	(3)
C)		Discuss PLA with a neat logic diagram.	(6)
	 A) B) C) A) B) A) B) 	 A) B) C) A) B) i ii B) i ii B) i ii 	 Write Verilog code for 4-bit synchronous down counter designed using T flip flops. Draw the logic diagram of JK flip flop. Write its characteristic table, characteristic equation and excitation table. Design a sequential circuit for a three-bit binary counter. Using T flip flops, draw the logic diagram of the sequential circuit. Write the boolean laws for the following: i) Distributive. ii) Demorgan. iii) Absorption. iv) Combining. B) Using algebraic manipulation, simplify the following expressions. i) A'B+A'B'C'D'+ABCD' ii) g(a,b,c,d)=a'c'd'+a'bd+bcd+acd'+b'cd' iii) f= (x1'+x2+x3).(x1'+x2'+x4).(x1'+x3+x4) iv) f= x2x3'x4+x1x3x4+x1x2'x4 A combinational circuit is specified by the following three functions: F1=X'Y'Z'+XZ F2=XY'Z'+XY F3=X'Y'Z+XY A combinational circuit for F1, F2 and F3 using a decoder and other gates. ii Draw the logic circuit for the following using gates: a) 4-to-1 MUX. b) 2-to-4 decoder B) Implement three-input XOR function using only, a) 2-to-1 MUX. b) 4-to-1 MUX. b) 4-to-1 MUX. Discuss the applications of transmission gates with neat diagrams. A) i Define a tri-state buffer. Write its truth table. Explain the following with a neat diagram. CMOS realization of a NOT gate.

-----End-----