Question Paper

Exam Date & Time: 04-May-2019 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENES IV SEMESTER B.Sc.(Applied Sciences) IN ENGINEERING END SEMESTER THEORY EXAMINATION-APRIL/MAY 2019

BIOLOGICAL THERMODYNAMICS [IBT 245 - S2]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

1)	A)	One mole of an ideal gas, initially at 30^{9} C and 1 bar, is changed to 130^{9} C and 10 bar by three different mechanically reversible processes: a) The gas is heated at constant volume until its temperature is 130^{9} C; then it is compressed isothermally until its pressure is 10 bar. b) The gas is first heated at constant pressure until its temperature is 130^{9} C; then it is compressed isothermally to 10 bar. c) The gas is first compressed isothermally to 10 bar; then it is heated at constant pressure at 130^{9} C. Calculate Q, W, Δ U, and Δ H in each case. Take C _P = (5/2) R and C _V = (3/2)	(14)
	В)	An incompressible liquid flows steadily through a conduit of circular cross- section and increasing diameter. At location 1, the diameter is 2.5 cm and the velocity is 2 m/s; at location 2, the diameter is 5 cm. a) What is the velocity at location 2? b) What is the kinetic energy change (J/kg) of the fluid between locations 1 and 2?	(6)
2)		Using Carnot engine cycle, prove that entropy is a state function.	(8)
	A) B)	With respect to 1 kg of liquid water: a) Initially at 0 ^o C, it is heated to 100 ^o C by contact with a heat reservoir at 100 ^o C. What is the entropy change of the water? Of the heat reservoir? What is ΔS_{total} ? b) Initially at 0 ^o C, it is first heated to 50 ^o C by contact with a heat reservoir at 50 ^o C and then to 100 ^o C by contact with a reservoir at 100 ^o C. What is ΔS_{total} ? c) Explain how the water might be heated from Θ C to 100 ^o C so that ΔS_{total} = 0.	(12)
3)	A)	Derive Clapeyron and Clausius/ Clapeyron equation for the single component two phase system	(10)
	B)	Derive equation relating molar and partial molar properties and	(10)

Gibb's/Duhem equation

A stream of nitrogen flowing at the rate of 4 kg/s and a stream of oxygen (10) flowing at the rate of 1.5 kg/s mix adiabatically in a steady-flow process. If the gases are assumed ideal, what is the rate of entropy increase as a result of the process?

^{B)} Prove In K =
$$-\Delta G^{\circ}/RT$$
 (10)

- ⁵⁾ The following reaction is carried out at 1 atmosphere (20) SO₂(g) + 1/2O₂ (g) → SO₃ (g) The reaction is carried out at a temperature of 855 K, using 20% excess air. Calculate K. At 25°C ΔH° = -98,890 J/mol and ΔG° = -70,866 J/mol Calculate equilibrium composition. Assume ideal gas and the process is at constant ΔH.
- A system formed initially of 2 mol of CO₂, 5 mol H₂, and 1 mol CO
 undergoes the reactions:

$$CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$$

 $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$
Develop expressions for the mole fractions of each of the reacting and product species as functions of the reacting coordinates for the two

reactions

B)

7)

Derive
$$\ln K/K^{\dagger} = - \Delta H/R \left(\frac{1}{T} - \frac{1}{T^{\dagger}}\right)$$
 from fundamental equation . (12)

A) Acetic acid is esterified in the liquid phase with ethanol at 10°C and (10) atmospheric pressure to produce ethyl acetate and water according to the reaction:

 $CH_3COOH(/) + C_2H_5OH(/) \rightarrow CH_3COOC_2H_5(/) + H_2O(I)$

If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. $\triangle H^0 = -3.640$ / and $\triangle G^0 = -4.650$ / at 298 K

^{B)} With proper explanation and equations explain Chemical potential of (10) species i in a mixture of ideal gases. Express chemical potential of species i in an ideal solution mixture using Lewis/Randall rule. If the solution is real, how to express chemical potential of species i in a mixture?

⁸⁾ The sublimation pressure of solid
$$CO_2$$
 is 133 Pa at -134.3°C and at 2660 ⁽⁸⁾

- A) Pa at -114.4^oC Calculate the enthalpy of sublimation.
- B) How cell modifies energetically unfavorable reaction to a favorable reaction ⁽⁶⁾ in glycolysis pathway
- C) Why Gibb's free energy calculation is very important in Biological (6) thermodynamics and how it is derived?

-----End-----