Question Paper

Exam Date & Time: 29-Apr-2019 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTER FOR APPLIED SCIENCES IV SEMESTER B.Sc. (Applied Sciences) in ENGG. END SEMESTER THEORY EXAMINATION APRIL/MAY 2019

VLSI DESIGN [IEC 243 - S2]

Marks: 100

1)

Answer 5 out of 8 questions.

Figure 1B

Layout must be drawn using the graph sheet provided.Missing data, if any, may be suitably assumed.

- A) Derive the relationship between drain to source current l_{ds} and drain to (10) source voltage V_{ds} in resistive and saturation region for an enhancement type NMOS.
 - ^{B)} The MOSFET in **Figure 1B** has $V_t = 1V$ and $\mu_n C_{ox}(W/L) = 1 \text{ mA/V}^2$. Find ⁽¹⁰⁾ the drain current and drain voltage for $V_G = 2V$ and $R_D = 1k\Omega$.

- ²⁾ Define latch-up in CMOS. Why does it occur? What are the remedies for ⁽¹⁰⁾ latch- up? Explain in detail with necessary circuit diagrams and curve.
 - A)
 - ^{B)} Derive the required ratio between Zp.u. and Zp.d. if an NMOS inverter with ⁽¹⁰⁾ depletion mode pull up is to be driven from another NMOS inverter with depletion mode pull up
- With precise figures explain the different steps involved in the fabrication of (10)
 PMOS transistor. What is the advantage of the self-aligned process?
 - ^{B)} Draw the circuit, stick diagram and layout of two input NAND gate using (10) CMOS design style.

Duration: 180 mins.

4)	A)	Explain the working and draw transfer characteristic of NMOS inverter with i) Resistor pull-up ii) Depletion mode transistor pull-up iii) Enhancement mode pull-up	(10)
	B)	Show that the inverter pair delay using two identical pseudo-NMOS inverters is larger by a factor 1.7 than that using minimum size NMOS inverters with depletion-mode pull-up.	(10)
5)	A)	Explain different scaling models. Discuss the effect of different scaling on following parameters: [i] Gate oxide capacitance C _g [ii] Channel resistance R _{on} [iii] Gate delay T _d	(10)
	В)	Discuss cascaded inverters as drivers for driving large capacitive loads and derive the necessary expressions.	(10)
6)	A)	Given that $1\square C_g = 0.01 \text{ pF}$. i) Find the optimal number of CMOS inverters to be cascaded so as to drive an off- chip capacitive load of 0.54 pF such that the total delay is minimized. ii) Give the cascaded structure, clearly showing the L:W ratio. iii) Show the delay T _d across each inverter stage and hence calculate the overall delay.	(10)
	B)	An enhancement type NMOS has V_t = 0.8V and $\mu_n C_{ox}$ = 20 μ A/V ² i)Find (W/L) for V _G =2.8V, V _D =5V, V _S =1V and I _D =0.24mA. ii) Calculate I _D for V _G =5V, V _D =4V, V _S =2V for same (W/L) as in part (i)	(10)
7)	A)	For CMOS inverter, derive the expression for V _{inv} . Study the effect of $\frac{W_n/L_n}{W_p/L_p}$ on DC transfer characteristics of CMOS inverter and on value of V _{inv} . What is the desired value of V _{inv} and why?.What is Z _{pu} /Z _{pd} ratio for symmetrical CMOS inverter?	(10)
	В)	Give hardware implementation and draw stick diagram for storing following 4-bit words using NMOS ROM structure. word1: 0101; word2: 0010; word3: 1001; word4: 0110	(10)
8)	A)	Calculate the effective capacitance for the given multi-layer structure in Figure 8A for 5μ m process. Relative Capacitance value for metal1= 0.075, polysilicon=0.1 and Gate-to-channel = 1.0.	(10)

^{B)} Implement Boolean function $F = \overline{(x + y) [z + (w.t)(z + x)]}$ using i) CMOS (10) logic ii) NMOS logic iii) pseudo NMOS logic.

-----End-----