MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

II SEMESTER B. TECH. END SEMESTER MAKE UP EXAMINATIONS, JUNE 2019

ENGINEERING CHEMISTRY (CHM 1051)

Date:11.06.2019 Time: 3 Hours Max. Marks: 50

Note: Answer all the questions.

- 1A. (i) Write the principle and calculation steps involved in the estimation of nitrogen and sulfur content in a coal sample.
 - (ii) Write the Nernst equation and calculate the EMF of the following cell at 298 K. Write the reactions involved. Given $E^{\circ}cu^{2+}/cu = 0.34V$; $E^{\circ}Mg^{2+}/Mg = -2.37V$

 $Mg(s) / Mg^{2+}(0.001 M) / Cu^{2+}(0.0001 M) / Cu(s)$

- 1B. (i) Give reason The electrode potential of calomel electrode is dependent on the concentration of KCl used.
 - (ii) Explain any four methods of cleaning the metal surface before electroplating.
- 1C. Discuss the structural features of polycatenar and bent liquid crystals.

[5+3+2]

- 2A. (i) Explain the construction and working of (a) nickel-cadmium battery (b) H₂-O₂ fuel cell.
 - (ii) Why lead acid battery should not be kept idle in partially discharged condition?
- 2B. (i) Describe liquid junction potential with an illustrative example.
 - (ii) For a Weston cadmium cell, EMF is 1.018 V at 293 K. Its temperature coefficient $(\delta E / \delta T)_p = -4.00 \times 10^{-5} \text{ VK}^{-1}$. Calculate ΔG and ΔS for the cell reaction.
- **2C.** (i) Draw the labelled diagram of the fixed dome type biogas plant.
 - (ii) The gross calorific value of a fuel containing 8% hydrogen was to be 9225.9 Kcal/kg. Find out its net calorific value if the latent heat of steam is 587 Kcal/kg.

[5+3+2]

- **3A.** (i) Discuss the role of cathodic inhibitors in combating corrosion.
 - (ii) Given below are the standard reduction potentials of Fe, Zn, Sn, Cu

Fe (E°= -0.44V); Zn (E° = -0.76V); Sn (E° = -0.14V); Cu (E° =+ 0.36V).

Which bimetallic couple undergoes maximum corrosion among these? Why?

- **3B.** List any two differences between the following:
 - (i) Large particle and dispersion strengthened composites
 - (ii) Nematic and smectic liquid crystalline phases
 - (iii) Two dimensional and three dimensional nanomaterials
- 3C. (i) Write any two requirements that need to be satisfied by materials in order to use them as biomaterials.
 - (ii) Give an example each for ion-dipole and dipole-dipole interactions.

[5+3+2]

- 4A. (i) Give reason for the following:
 - (a) Anodic inhibitors should be added in sufficient quantity to the medium to prevent corrosion.
 - (b) Calomel electrodes gives erroneous results above 50 °C.
 - (ii) With a labelled diagram explain the CVD technique used for the formation of thin films.
- 4B. Explain how the following factors affect the rate of corrosion.
 - (i) Hydrogen overvoltage (ii) Temperature (iii) pH
- 4C. Consider a polymer sample comprising of 5 moles of polymer molecules having molecular weight of 4000 g/mol and 15 moles of polymer molecules having molecular weight of 3000 g/mol. Calculate number average and weight average mass.

[5+3+2]

- 5A. (i) Justify the following statements;
 - a) Ethylene undergoes polymerization while ethane doesn't.
 - b) Porosity must be controlled in refractories.
 - (ii) Explain how the following factors affect the glass transition temperature.
 - (a) Cross linking (b) Plasticizer (c) Molecular weight
- 5B. Mention any four predictable causes of nonlinearity of the Beer-Lambert law.
- **5C.** Explain structural composites with suitable examples.

[5+3+2]