Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

II SEMESTER B.TECH

END SEMESTER EXAMINATIONS, APR/MAY 2019

SUBJECT: MECHANICS OF SOLIDS [CIE 1051] REVISED CREDIT SYSTEM (06/04/2019)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitably assumed.

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

4A.	A bar of 200 mm long and 20 mm square cross section is subjected to an axial compressive load of 50 kN in longitudinal direction. The modulus of elasticity of the material is 150 GPa and Poisson's ratio is 0.30. Find the change in length, if expansions in lateral directions are prevented by the application of uniform lateral external pressure of suitable intensity.	04	04
4B.	A thin cylinder of 75 mm internal diameter, 250 mm long with walls 2.5 mm thick is subjected to an internal pressure of 7 MN/m ² . Determine the change in internal diameter, change in length, and change in volume. Take $E = 200 \text{ GN/m}^2$, $\mu = 0.3$.	03	04
4C.	Obtain the relationship between bulk modulus (K) and modulus of elasticity (E).	03	04
5A.	A compound tube consists of a copper tube 160 mm external diameter and 140 mm internal diameter is enclosed inside a steel tube of 180 mm external diameter and 160 mm internal diameter as shown. If the compound tube carries an axial load of 900 kN, find the stresses developed and the deformation in each tube. Take $E_s = 2 \times 10^5 \text{ N/mm}^2$ and $E_{cu} = 1 \times 10^5 \text{ N/mm}^2$ $\frac{1400 \text{ mm}}{140 \text{ mm}} = \frac{5 \text{teel}}{180 \text{ mm}} = \frac{1400 \text{ mm}}{140 \text{ mm}} = \frac{180 \text{ mm}}{140 \text{ mm}} = \frac{160 \text{ mm}}{140 \text{ mm}} = \frac{100 \text{ mm}}{100 \text{ mm}} = 100 \text{$	04	05
5B.	A bar is composed of two segments as shown in figure. Find the stress developed in each material when the temperature is raised by 60°C when the supports are perfectly rigid. Take $E_s = 200 \text{ GPa}$, $E_{Cu} = 100 \text{ GPa}$, $\alpha_s = 12 \times 10^{-6}$ /°C, $\alpha_{cu} = 18 \times 10^{-6}$ /°C. A _s = 250 mm ² Steel 200 mm 250 mm	04	05
5C.	A rail track is to be constructed using steel rails of 20 m long. What minimum expansion gap is to be provided so that thermal stresses in rails should not exceed 70 N/mm ² when the rails experience maximum rise in temperature of 40 ^o C during peak hours? Given $\alpha = 15 \times 10^{-6}$ /°C and E = 210 GPa.	02	05