Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

IV SEMESTER B.Tech.(BME) DEGREE MAKEUP EXAMINATIONS JUNE 2019 SUBJECT: DIGITAL SYSTEM DESIGN (BME 2203) (REVISED CREDIT SYSTEM) Monday, 17th June 2019: 2 PM to 5 PM.

TIME: 3 HOURS

1. 2. MAX. MARKS: 50

Instructions to Candidates:									
 Answer all the questions. Draw labeled diagrams wherever necessary. 									
1.	(a)	What are fully customized <i>Application Specific Integrated Circuit</i> (ASIC)? How it is different than other variety of IC. Explain.	03						
	(b)	Design a CMOS NOR gate and explain.	04						
	(c)	Identify two benefits of CMOS gate over TTL. Draw a two input NMOS AND gate and indicate ON/OFF state of each transistor for an input "10".	03						
2.	(a)	Explain how Programmable Logic Array (PLA) device are different than Programmable Array Logic (PAL) device? Design a full adder circuit using PLA device.	04						
	(b)	Design <i>transmission gate</i> based multiplexer with buffer stages and explain its operation.	03						
	(c)	Given the function $f(w_1, w_2, w_3) = \sum m(0, 3, 5)$; use Shannon's expansion theorem and expand the function. Identify the co-factors. Draw the 2:1 MUX based circuit with other necessary gates.	03						
3.	(a)	Describe the architecture of CPLD (Complex Programmable Logic Device). Explain how it is different from a simple PLD.	04						
	(b)	Design a two variable LUT based circuit for FPGA when the given function is $f(W_1, W_2, W_3) = W_3 + W_1 \overline{W_3} + W_2 W_4$.	03						
	(c)	Write a Verilog HDL module for a 4:1 multiplexer.	03						

- 4. (a) What is coarse grained *Field Programmable Gate Array*? Explain how it is different 04 from Mask Programmable Gate Array.
 (b) Sketch the NMOS AND-OR plane of PLA to indicate the programmed state of the following function: F = AC + B.
 (c) Explain the following in association with Verilog: 03

 (i) `timescale 1ns/100 ps
 (ii) always @ (posedge clock)
 - (iii) **assign** #2 f = A & B;
 - 5. (a) Draw Y- chart and explain its significance.
 - (b) Design a Verilog HDL module for the full adder circuit shown in figure 5(b) using 03 dataflow style.

Figure 5 (b)

(c) Design a Verilog module for describing a 4-bit adder using the instance of full adder designed in Q5(b). Draw the digital circuit considered for the design.

03