Register number

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

MANIPAL

IV SEMESTER B.TECH. (BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, APRIL 2019

SUBJECT: CHEMICAL AND BIOCHEMICAL ENGINEERING THERMODYNAMICS [BIO 2001]

	Inne: 3 hours MAX. MARKS: 50	
1A.	A horizontal piston/cylinder arrangement is placed in a constant-temperature bath. The piston slides	
	in the cylinder with negligible friction and an external force holds it in place against an initial gas	
	pressure of 14 bar. The initial gas volume is 0.03 m ³ . The external force on the piston is reduced	
	gradually and the gas expands isothermally as its volume doubles. If the volume of the gas is related	4
	to its pressure so that the product PV is constant, what is the work done by the gas in moving the	4
	external force?	
	How much work would be done if the external force were suddenly reduced to half its initial	
	value instead of being gradually reduced?	
1B.	An ideal gas, initially at 30°C and 100 kPa, undergoes the following cyclic	
	Processes in a closed system:	
	(a) In mechanically reversible processes, it is first compressed adiabatically to 500 kPa, then cooled	
	at a constant pressure of 500 kPa to 303.15 K (30°C), and finally expanded isothermally to its	
	original state.	6
	(b) The cycle traverses exactly the same changes of state, but each step is irreversible with an	
	efficiency of 80% compared with the corresponding mechanically reversible process.	
	Calculate Q, W, ΔU , and ΔH for each step of the process and for the cycle. Take C _P = (7/2) R and C _V	
	= (5/2) R.	
2A.	A particular power plant operates with a heat source reservoir at 623.15 K and the heat sink reservoir	
	at 303.15 K. It has a thermal efficiency equal to 55% of the Carnot engine thermal efficiency for the	
	same temperatures.	
	(a) What is the thermal efficiency of the plant?	3
	(b) To what temperature must the heat source reservoir be raised to increase the thermal	
	efficiency of the plant to 35%? Again efficiency is 55% of the Carnot engine value.	
2B.	Water at 93.5° C with density 958 kg/m ³ is pumped from a storage tank at the rate of $3.15 \times 10^{-3} \text{ m}^{3}/\text{s}$.	-
	The motor for the pump supplies work at the rate of 1.5 KW. The water goes through a heat	
	exchanger, giving up heat at the rate of 700 KW and is delivered to a second storage tank at an	4
	elevation 15 m above the first tank. What is the temperature of the water delivered to the second	-
	tank?	
2C.	2 kg of liquid water at 0° C is heated to 30° C by contact with a heat reservoir at 30° C and then to 90°	
	C by contact with a reservoir at 90° C, what is total change in entropy (water and reservoir)?	3
3 A .	A process stream contains light species 1 and heavy species 2. A relatively pure liquid stream	
	containing mostly 2 is desired, obtained by a single-stage liquid/yapor separation. Specifications on	
	the equilibrium composition are: $x_1 = 0.003$ and $y_1 = 0.940$. Use data given below to determine T(K)	4
	and P(bar) for the separator. Assume that modified Raoult's law $Y_iP = X_i v_i P_i^{sat}$ applies: the	
	calculated P should validate this assumption.	
1		1

Data:	
For the liquid phase, $\ln v_1 = 0.93 X_2^2$ $\ln v_2 = 0.93 X_1^2$	
$\ln P_i^{sat} = A_i - B_i/T$	
$A_1 = 10.08, B_1 = 2,572.0, A_2 = 11.63, B_2 = 6,254.0$	
The sublimation pressure of solid CO ₂ is 133 Pa at -134.3° C and at 2660 Pa at -114.4° C. Calculate	2
the enthalpy of sublimation	
A stream of nitrogen flowing at the rate of 4 kg/s and a stream of oxygen flowing at the rate of 1.5	
kg/s mix adiabatically in a steady-flow process. If the gases are assumed ideal, what is the rate of	4
entropy increase as a result of the process? Molecular weight of nitrogen and oxygen are 28 and 32	-
respectively	
A system initially containing 2 mol C ₂ H ₄ and 3 mol O ₂ undergoes the reactions:	
$C_2H_4(g) + \frac{1}{2}O_2(g) \rightarrow ((CH_2)_2)O(g)$	
$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$	4
Develop expressions for the mole fractions of the each species in the reaction as the functions of the	
reaction coordinates of the two reactions.	
Butadiene is prepared by the gas phase catalytic dehydrogenation of 1-butene, at 900 K and 1 bar.	
$C_4H_8(\g) \rightarrow C_4H_6(g) + H_2(g)$	
a. In order to suppress side reactions, the butene is diluted with steam before it passes into the	
reactor. Estimate the conversion of 1-butene for a feed consisting of 10 moles of steam per	6
mole of 1-butene.	v v
b. Find the conversion if the inert were absent and side reactions are ignored	
c. Find the total pressure that would be required to obtain the same conversion as in case a. if no	
inert were present.	
ΔG° at 900 K = 10.62 KJ/mole	
Compute the equilibrium mole fraction of each of the species in the gas – phase reaction	
$CO_2 + H_2 \rightarrow CO + H_2O$	
At 1000 K and (a) 1 bar total pressure and (b) 500 bar total pressure. The equilibrium constant for	2
this reaction is 0.693 at 1000 K and 1 bar. Initially there are equal amounts of carbon dioxide and	
hydrogen present. Assume gases behaves ideally.	
A protein is soluble in water. At 25 [°] C it is found that if a solution with 2 g of protein per liter of	
solvent is placed in an osmometer, the height h to which the water rises is 0.85 cm. Use the	4
information to estimate the molecular weight of the protein. The density of water is 0.98 g/cm ³	
How living cells uses two tricks and modifies energetically unfavorable reaction to a favorable	
reaction in any biochemical pathways? Explain	
In Glycolysis, the enzyme Phosphofructokinase I catalyzes the reaction	2
Fructose 6-phosphate + ATP \rightarrow fructose 1,6-bisphosphate + ADP	+
Given the data below, calculate the equilibrium constant for this reaction.	2
Data: ATP \rightarrow ADP + P _i $\Delta G^{\circ} = -30.5$ KJ/mol	
	 Data: For the liquid phase, lnv₁ = 0.93X₂² lnv₂ = 0.93X₁² lnP₂^{set} = A₁ - B/T A₁ = 10.08, B₁ = 2,572.0, A₂ = 11.63, B₂ = 6,254.0 The sublimation pressure of solid CO₂ is 133 Pa at -134.3° C and at 2660 Pa at -114.4° C. Calculate the enthalpy of sublimation A stream of nitrogen flowing at the rate of 4 kg/s and a stream of oxygen flowing at the rate of 1.5 kg/s mix adiabatically in a steady-flow process. If the gases are assumed ideal, what is the rate of entropy increase as a result of the process? Molecular weight of nitrogen and oxygen are 28 and 32 respectively A system initially containing 2 mol C₂H₄ and 3 mol O₂ undergoes the reactions: C₂H₄(g) + 3O₂(g) → (C(H₂)₂)O (g) C₂H₄(g) + 3O₂(g) → 2CO₂(g) + 2H₂O (g) Develop expressions for the mole fractions of the each species in the reaction as the functions of the reaction coordinates of the two reactions. Butatien is prepared by the gas phase catalytic dehydrogenation of 1-butene, at 900 K and 1 bar. C₄H₄(g) + C₄H₂(g) a. In order to suppress side reactions, the butene is diluted with steam before it passes into the reactor. Estimate the conversion of 1-butene for a feed consisting of 10 moles of steam per mole of 1-butene. b. Find the conversion if the inert were absent and side reactions are ignored c. Find the total pressure that would be required to obtain the same conversion as in case a. if no inert were present. ACP₄ at 900 K at 10.02 K J/mole Cop₄ at 1000 K and (a) 1 bar total pressure and (b) 500 bar total pressure. The equilibrium constant for this reaction is 0.693 at 1000 K and 1 bar. Initially there are equal amounts of carbon dioxide and hydrogen present. Assume gases behaves ideally. A protein is soluble in water. At 25° C it is found that if a solution with 2 g of protein per liter of solvent is placed in an osmometer, the height h to which the water rises is 0.8