

IV SEMESTER B. TECH. END SEMESTER EXAMINATIONS, APRIL/MAY 2019 ANALYTICAL METHODS AND INSTRUMENTATION (CHM 3281)

Date: 07-05-2019 Time: 3 Hours Max. Marks: 50

Note: Answer all five full questions. Draw a neat diagram and equations wherever necessary.

- 1A. Write four differences between common and instrumental methods of analysis
- **1B.** Which of the following compounds are expected to absorb ultraviolet radiation? Explain your reasoning.

i) Benzene ii) Cyclohexane iii) Acetaldehyde iv) 1,3-butadiene

- 1C. Give reasons for the following:
 - i) Symmetric stretching vibration of CO₂ is IR inactive.
 - ii) Beer's law not applicable to the colloidal solutions.
 - iii) ¹H-NMR spectrum of ethyl alcohol shows 3 peaks however ethane shows only one peak.
 - iv) Glass sample holders can't be used in the UV-spectrophotometers

[2+4+4]

- 2A. Calculate the frequency, wave number and energy for a typical IR radiation of wavelength 10 μm .
- **2B.** Show that $I = \mu r^2$ for a simple diatomic rigid rotator. Describe how the spectrum of rigid and non-rigid diatomic rotators differs.
- 2C. i) Calculate the approximate wave number of the fundamental absorption peak due to the stretching vibrations of a carbonyl group. The force constant for a double bond has an approximate value of 1 x 10⁶ dynes/cm. The masses of carbon and oxygen atoms are 1 x10⁻²³ and 2.6 x 10⁻²³ g/atom.
 - ii) Explain the construction and working principle of the Golay detector.

[2+4+4]

- **3A**. A sample was excited by the 435 nm line of mercury. A Raman line was observed at 444 nm. Calculate the Raman shift in cm⁻¹.
- 3B. Deduce Lambert's law and discuss the chemical deviations Beer's law.

3C. What is meant by chemical shift? Describe the spin-spin splitting of ethyl bromide and n-butanol in the NMR Spectra.

[2+4+4]

- **4A.** Give reason: Helium is a suitable carrier gas in Gas Liquid Chromatography (GLC) when Differential Thermal Conductivity Detector (DTCD) is used.
- **4B.** Explain the various factors influencing the band broadening of a chromatographic column using a van deemter equation.
- **4C.** i) Discuss the various steps involved in the determination of retention factor (R_f) of a solute by thin layer chromatography (TLC)
 - ii) Explain the determination of concentration of an unknown acid by potentiometric titrations using a standard NaOH.

(4+4+2)

- 5A. Write any two similarities and two dissimilarities between GLC and HPLC.
- **5B.** Discuss the various classes of chromatography based on the mobile phase and the equilibrium involved in each type of chromatographic technique.
- **5C.** The following data apply to a column for partition chromatography.

Length of packing = 22.6 cm

Flow rate = 0.287 mL/min.

 $V_{M} = 1.26 \text{ mL}$

 $V_S = 0.148 \text{ mL}$

species	Retention time (min.)	Width of peak base (min.)
unretained	4.2	
Α	14.4	1.07
В	15.4	1.16
С	20.7	1.45

Calculate

- (i) Average number of plates and plate height
- (ii) Resolution for species A and B; B and C
- (iii) Selectivity factor for A and B; for B and C
- (iv) the length of the column necessary to give a resolution of 1.5 for A and B

(4+4+2)
