Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING)

ENDSEM EXAMINATIONS, APR 2019

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2201]

REVISED CREDIT SYSTEM (24/04/2019)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	The molar volume of a binary solution at constant T and P is given by the relation									
	$V = 120x_1 + 70x_2 + (15x_1 + 8x_2)x_1x_2$									
	where V is in m^3/mol . Determine the expression for V_2 as a function of x_2 and									
	calculate the value of V_2° .									
1B.	Estimate the fugacity of gaseous propane at 12 bar and 310 K using the following data. (Solve using compressibility factor method)									
	P, bar	1.7	3.4	6.8	10.2	11.7	13.6			
	V, m ³ /kg	0.3313	0.1609	0.0754	0.0468	0.0382	0.021			
	The molecular weight of propane is 44									
2A.	Justify the following statements.									
	(a) The concept of ideal gaseous solution is less restrictive than that of an ideal									
	gaseous mixture.									
	(b) Kaouit's law is a simplified form of Lewis-Kandall rule.									
0.0	Check whether t	eck whether the following equations satisfy Gibbs-Duhem equation.								
2 B .	$ln v_1 = A x_2^2 + B x_2^2 (3x_1 - x_2)$									
	$lnv_{2} = Ax_{1}^{2} + Bx_{2}^{2}(x_{1} - 3x_{2})$									
	Note: The final answer on both sides of the Gibbs-Duhem equation should be in									
	terms of x_1 .									
20.	Define the terms: chemical potential, Henry's law, residual volume, Lechatelier's									
20.	principle.									
3A.	Discuss the effect of pressure on 1-x-y diagram.									
	The system n-pentane (1)- n-hexane(2) n-heptane(3) forms an ideal solution.									
3B.	Determine the	compositio	n of liqui	d which	1s in equ	$\frac{1110}{200}$	with vapour of	03		
	composition y_1	$=0.45, y_2 =$	=0.3 and y_3	$_3 = 0.25$ at	70° C. At	$70^{\circ}\mathrm{C}$, the	vapour pressure			
	of n-pentane, n-hexane and n-heptane are 2129.57 Torr, 785.82 Torr and 303.99 Torr									
	respectively.									

3C.	With the help of phase diagrams, discuss the maximum boiling azeotrope.								03
4A.	The following data were reported for VLE for ethanol (1)- water (2) system at 298 K.								06
	Test whether the following data are consistent by zero area method.								
	<i>x</i> ₁	0.163	0.226	0.337	0.440	0.579	0.830		
	<i>y</i> ₁	0.531	0.562	0.589	0.619	0.685	0.849		
	P, kPa	6.02	6.38	6.80	7.04	7.30	7.78		
	The vapour pressure of ethanol and water are 7.86 and 3.17 kPa respectively.								
4B.	The binary system having component (1) and component (2) forms an azeotrope at $x_1=0.7390$ at 25°C and 262 Torr. Calculate the P-x-y data at 25°C. (any 2 sets of data). The system follows van Laar equation. The vapour pressure varies with respect to temperature as $\log_{10} P_1^S = 7.11714 - \frac{1210.595}{T+229.664}$ $\log_{10} P_2^S = 6.85146 - \frac{1206.470}{T+223.136}$								04
5A.	For the vapour phase hydration of ethylene to ethanol according to $C_2H_4 + H_2O \rightarrow C_2H_5OH$ the equilibrium constants at 420 K and 600 K were found to be 6.8×10^{-2} and 1.9×10^{-3} . The specific heat data is as follows. $\boxed{C_p, J/\text{mol K}}$ Ethylene $11.886 + 120.12 \times 10^{-3}T - 36.649 \times 10^{-6}T^2$ Water $30.475 + 9.652 \times 10^{-3}T + 1.189 \times 10^{-6}T^2$ Ethanol $29.358 + 166.9 \times 10^{-3}T - 50.09 \times 10^{-6}T^2$ Develop the general expressions for equilibrium constant and standard free energy change as functions of temperature.								06
5B.	The reaction $N_2 + O_2 \rightarrow 2NO$ takes place in the gas phase at 2700°C and 2025 kPa. The reaction mixture initially comprises 15 % oxygen, 77 % nitrogen and the rest inerts. The standard Gibbs free energy change for the reaction is 113.83 kJ/mol at this temperature. Assuming ideal gas behavior, calculate the composition of all the components in the product stream.								04