

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKEUP EXAMINATIONS, MAY/JUNE 2019

SUBJECT: HEAT TRANSFER OPERATIONS

[CHE 2202] REVISED CREDIT SYSTEM

Date :

Time: 2 – 5 PM

MAX. MARKS: 50

Instructions to Candidates:

Answer **ALL** the questions.

Missing data if any, may be suitably assumed.

1A.	Derive an expression to determine heat flow (Q) for a hollow cylinder with uniform internal heat generation.					(6 marks)	
1B.	Aniline is to be cooled from 60.6°C to 21.1°C in the inner pipe of a double pipe heat						
	exchanger having outside area of 6 m ² . Toluene flows counter-currently to that of						
	aniline and it is entering jacket at 18.3°C. Calculate the outer temperature of toluene,						
	LMTD and overall heat transfer coefficient. Data given below may be used.						
		Data	Aniline	Toluene			
		Specific heat J/kg°C	2300	1800			
		Flow rate kg/hr	4500	8000		(4 marks)	
21	An ordinary egg can be approximated as a 5 cm diameter sphere. The egg is initially						
2 A .	at a uniform temperature of 5^0 C and is dropped into boiling water at 95^0 C. Taking						
	the convection heat transfer coefficient to be $h = 1200 \text{ W/m}^{2.0} \text{ C}$, determine how						
	long it will take for the center of the egg to reach 70° C.						
	Properties: $k = 0.627$ W/m. ⁰ C and $\alpha = 0.151 \times 10^{-6}$ m ² /s					(4 marks)	

2B	A copper fin of diameter 4 mm and length 25 mm is used to transfer heat from a base			
2D,	surface at a temperature of 350 K to ambient air at 300 K by natural convection.			
	Calculate the ratio of heat transfer rate. Assume the fin tip to be adiabatic.			
	Properties of air over the working temperature range: $\mathcal{G} = 18.41 \times 10^{-6} \text{ m}^2/\text{s}$,			
	Pr = 0.704, $k = 0.0282$ W/m-K and $\beta = 0.003$ K ⁻¹ . Properties of copper over the			
	working temperature range: $k = 400$ W/m-K.			
2C.	Identify the mode of heat transfer for the following:			
	(i) Heat loss from a thermos flask			
	(ii) Heat transfer from a radiator			
	(iii) Heating of water in a bucket with an immersion heater			
	(iv) Condensation of steam in a condenser	(2 marks)		
3A.	(i)Explain the concept of black body? What is monochromatic emissive power?			
	(ii)What is Wein's Displacement Law?	(2 marks)		
3B.	Water at the rate of 4 kg/sec is heated from 37°C to 55°C in a 1-2 shell and tube heat			
	exchanger. On the shell side hot water is used as a heating fluid which flows inside			
	the heat exchanger at a mass flow rate of 1.9 kg/sec and at a temperature of 94°C.			
	The overall heat transfer coefficient is 1420 W/m ² °C. The average velocity of water			
	flowing inside the tubes is 0.366 m/sec.The diameter of the tubes is 1.9 cm. The			
	correction factor value $F = 0.9$. The length of the tubes must not be longer than 3			
	metres because of space limitations. Calculate the number of tubes per pass.	(5 marks)		
3C.	What is steam economy and capacity in an evaporator? Classify the different types of	(3 marks)		
	evaporator.	(3 mai ks)		
11	A 7.5 cm diameter iron nine carries steam at a pressure of 7.12 atm $(167^{\circ}C)$. The line			
	is unlagged and is 60m long. It losses heat to the surroundings by conduction			
	is unagged and is oblit long. It losses heat to the suffoundings by conduction, convection and rediction. The suffoundings are at 20° C. The emissivity of the nine			
	wall is 0.7 and the view factor may be assumed to be unity. The convection heat			
	wall is 0.7 and the view factor may be assumed to be unity. The convection heat transfer coefficient may be taken as 7.0 keel/hr m ² C. If the latent heat of steem is 500			
	kcal/Kg. How many kilograms of steam will condense per hour			
	$r = 4.875 \times 10^{-8} \text{K cal/hr m}^2 \text{K}^4$	(3 marks)		
4 R	It is desired to concentrate 5000kg/hr of a solution of sodium hydroxide from 10%			
, UF	to 25% solids in a single effect evanorator. Steam is available at 110 deg C			
	and the vapor space is maintained at 410 mm of Hg. The boiling point of water			
	corresponding to the vapor space is 84deg C. The solution has a boiling point			
4B.	It is desired to concentrate 5000kg/hr of a solution of sodium hydroxide from 10% to 25% solids in a single effect evaporator. Steam is available at 110 deg C and the vapor space is maintained at 410 mm of Hg. The boiling point of water corresponding to the vapor space is 84deg C. The solution has a boiling point			

	elevation of 10deg C. The enthalpies of the feed and thick liquor are 90 and 80			
	kcal/kg respectively and the enthalpy of vapor is 650kcal/kg. The feed enters			
	at its boiling point corresponding to the vapor space pressure. Latent heat of			
	vaporization is 534 kcal/kg			
	(a) Calculate the steam consumption per hour (b) If the available heat transfer			
	area is $35m^2$, estimate the heat transfer coefficient.			
4C.	What are the differences between filmwise condensation and dropwise condensation?	(2 marks)		
5A.	In a condensing unit steam flows outside the tubes 59 mm outer diameter, 54 mm			
	inner diameter and water flows through the tube. The thermal conductivity of the			
	tube material is 60 W/mk. Convection heat transfer coefficient on steam and water			
	side is 12000 and 650 W/m^2K respectively. Assume dirt resistance of 0.0000877			
	m ² K/W on both sides of the tube.Calculate the heat transfer coefficient based on			
	outside diameter of the tube.			
5B.	A batch of 1,000 kg of KCl is dissolved in sufficient water to make a			
	saturated solution at 363 K, where the solubility is 35 wt % KCl in water. The			
	solution is cooled to 293 K, at which temperature its solubility is 25.4 wt %. What			
	is the weight of water required for the solution and the weight of KCl crystals			
	obtained?	(4 marks)		
5C.	Explain the following terminologies in crystallization	(2 montro)		
	(i)Super saturation (ii)Crystal growth	(3 mai 88)		