Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE-UP SEMESTER EXAMINATIONS, JUNE 2019 SUBJECT: MASS TRANSFER-I [CHE 2203] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

☑ Answer **ALL** the questions. ☑ Missing data may be suitably assumed.

1A.	Derive the expression to calculate flux for diffusion of A through Non-diffusing B.	4
1B.	Oxygen (A) is diffusing in a mixture of oxygen (A) –nitrogen (B) at 1 std atm, 298 K.	
	Concentration of oxygen at planes 2 mm apart are 20 and 40 mole % respectively.	
	Nitrogen is non-diffusing. Diffusivity of oxygen in nitrogen is 1.89*10 ⁻⁵ m ² /s.	
	Calculate the flux of oxygen.	3
1C.	Explain film theory of interfacial mass transfer along with governing equations?	3
2A	With appropriate schematic sketch, material balance equations and graphical	
	construction, explain how would you calculate the number of ideal stages in a	
	multistage countercurrent operation when transfer occurs from E to R?	3
2B.	Derive the relation between overall mass transfer coefficient and local mass	
	transfor coefficient $\begin{pmatrix} 1 \\ - \end{pmatrix} \begin{pmatrix} 1 \\ - \end{pmatrix} \begin{pmatrix} m \\ m \end{pmatrix}$	
	transfer coefficient $\frac{1}{K_y} = \frac{1}{k_y} + \frac{m}{k_x}$	3
2C.	Consider a system in which component A is being transferred from a gas phase to a	
	liquid phase. The equilibrium relation is given by $y_A = 0.75x_A$, x_A and y_A are the mole	
	fractions of A in liquid phase and gas phase respectively. At one point on the	
	equipment, the gas contains 20 mole % A and liquid 4 mole % A. Gas film mass	
	transfer coefficient k_y at this point is 10 kmol/(hr.m ² . Δy_A) and 50% of the resistance	
	in the gas film. Calculate	
	(a) Find the overall mass transfer coefficient K _Y	
	(b) Mass transfer flux , N _A	
	(c) Interfacial concentration, x_{Ai} and y_{Ai}	4
3A.	Gas containing 2% by volume of benzene vapors enters the absorber column at the	T
	rate of 0.01075 kmol/s. 90% removal of benzene is required. The scrubbing wash oil	
	is to enter at 26 ⁰ C, containing 0.005 mole fraction benzene.	
		5
	<u> </u>	v

	The equilibrium data for the system is g							1
	Moles of benzene/ mole of wash oil (X) Moles	s of be		nole of dry	/ ga	s (Y)	
	0			0	2			
	0.02	2.45*10 ⁻³						
	0.04 4.83*10 ⁻³							
	0.08		9.34*10 ⁻³					
	0.12	13.57*10 ⁻³						
	0.16							
	0.2			21.27*	10 ⁻³			
	Determine the number of theoretical ratio.	stages requ	uired	for 1.5 t	imes the	mir	nimum	1
3B.	Explain flooding and channeling operat	ing difficult	ies in	packed t	ower			2
3C.	Explain working principle of the sieve p	late tower a	absorp	otion colu	umn			3
4A.	Explain physical and chemical adsorption	on briefly						4
4B.	An aqueous solution containing a valua	able solute i	is colo	ored hv s	mall amo	unte	s of ar	
	impurity. Before crystallization, the im decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y)	adsorbs o	only ir w:			nt (
	decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y)	adsorbs o s given belo	nly ir w: 3	nsignifica	nt amou	nt (of the	
	decolorizing activated carbon which principal solute. The equilibrium data isColour units/kg solution (Y)Colour units/kg carbon (X)It is desired to reduce the colour to 5% using activated carbon. Determine the solution.Determine the minimum amount of fr for (a) A single stage operation	adsorbs o s given belo 8.6 6.3 1000 82 o of its origin amount of t resh carbon	nly ir w: <u>3</u> 5 nal val fresh o	4.3 663 ue of 10 carbon re	1.7 395 units/kg c equired pe	of sc of sc er 10	0.7 223 Diutior 000 kg	• • •
54.	decolorizing activated carbon which principal solute. The equilibrium data isColour units/kg solution (Y) Colour units/kg carbon (X)It is desired to reduce the colour to 5% using activated carbon. Determine the solution. Determine the minimum amount of fr for	adsorbs o s given belo 8.6 6.3 1000 82 o of its origin amount of t resh carbon	nly ir w: 3 5 fresh o requi	4.3 663 ue of 10 carbon re	1.7 395 units/kg c equired pe 1000 kg c	of sc of sc er 10	0.7 223 Diutior 000 kg	
5Α.	decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y) Colour units/kg carbon (X) It is desired to reduce the colour to 5% using activated carbon. Determine the solution. Determine the minimum amount of fr for (a) A single stage operation (b) A two stage cross current operation Derive relation between gas phase hun $\frac{(H-H_w)}{(T-T_w)} = -\frac{h_{coeff-gas}}{k_Y \lambda_S}$	adsorbs o s given belo 8.6 6.3 1000 82 o of its origin amount of f resh carbon nidity and w	nly ir w: 3 5 fresh o requi	4.3 663 ue of 10 carbon re ired per	1.7 395 units/kg c equired pe 1000 kg c	of sc of sc er 10	0.7 223 Diutior 000 kg	• • • • • •
	decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y) Colour units/kg carbon (X) It is desired to reduce the colour to 5% using activated carbon. Determine the solution. Determine the minimum amount of fr for (a) A single stage operation (b) A two stage cross current operation Derive relation between gas phase hun $\frac{(H-H_w)}{(T-T_w)} = -\frac{h_{coeff-gas}}{k_Y \lambda_S}$ Clearly state the assumptions and labe	adsorbs o s given belo 8.6 6.3 1000 82 of its origin amount of t resh carbon nidity and w	nly ir w: 3 5 fresh o requi /et bu	4.3 663 ue of 10 carbon re ired per lb tempe	1.7 395 units/kg c equired pe 1000 kg c	of score 10	0.7 223 olutior 000 kg	• • • • • •
5A. 5B.	decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y) Colour units/kg carbon (X) It is desired to reduce the colour to 5% using activated carbon. Determine the solution. Determine the minimum amount of fr for (a) A single stage operation (b) A two stage cross current operation Derive relation between gas phase hun $\frac{(H-H_w)}{(T-T_w)} = -\frac{h_{coeff-gas}}{k_Y \lambda_S}$ Clearly state the assumptions and labe An air-water vapour mixture at 1 atmos	adsorbs o s given belo 8.6 6.3 1000 82 o of its origin amount of t resh carbon nidity and w el the notatio	nly ir w: 3 5 1 1 5 1 5 1 5 1 5 1 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	4.3 663 ue of 10 carbon re ired per lb tempe	nt amount 1.7 395 units/kg of equired per 1000 kg of rature.	nt of score 10	of the 0.7 223 olutior 000 kg olutior 64.5°(
	decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y) Colour units/kg carbon (X) It is desired to reduce the colour to 5% using activated carbon. Determine the solution. Determine the minimum amount of fr for (a) A single stage operation (b) A two stage cross current operation Derive relation between gas phase hun $\frac{(H-H_w)}{(T-T_w)} = -\frac{h_{coeff-gas}}{k_Y \lambda_S}$ Clearly state the assumptions and labe	adsorbs o s given belo 8.6 6.3 1000 82 of its origin amount of f resh carbon nidity and w el the notatio osphere has f Latent hea	nly ir w: 3 5 fresh o requi vet bu vet bu a dry at of v	4.3 663 ue of 10 carbon re ired per lb tempe sed. bulb tem	nt amount 1.7 395 units/kg of equired period 1000 kg of rature. mperature ion is 579	nt of scorer 10 of	of the 0.7 223 olutior 000 kg olutior 64.5°C cal/kg	
	decolorizing activated carbon which principal solute. The equilibrium data is Colour units/kg solution (Y) Colour units/kg carbon (X) It is desired to reduce the colour to 5% using activated carbon. Determine the solution. Determine the minimum amount of fr for (a) A single stage operation (b) A two stage cross current operation Derive relation between gas phase hun $\frac{(H-H_w)}{(T-T_w)} = -\frac{h_{coeff-gas}}{k_Y \lambda_S}$ Clearly state the assumptions and laber An air-water vapour mixture at 1 atmos and wet bulb temperature of 31.1°C. It	adsorbs o s given belo 8.6 6.3 1000 82 of its origin amount of f resh carbon nidity and w el the notatio osphere has f Latent hea	nly ir w: 3 5 fresh o requi vet bu vet bu a dry at of v	4.3 663 ue of 10 carbon re ired per lb tempe sed. bulb tem	nt amount 1.7 395 units/kg of equired period 1000 kg of rature. mperature ion is 579	nt of scorer 10 of	of the 0.7 223 olutior 000 kg olutior 64.5°C cal/kg	