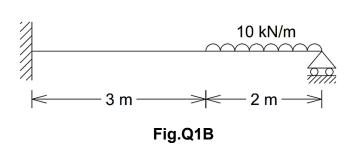
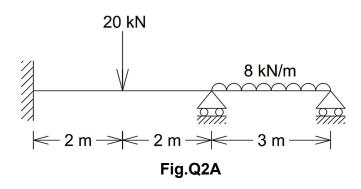


IV SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS APRIL 2019

SUBJECT: ANALYSIS OF INDETERMINATE STRUCTURES [CIE 2202]


Date of Exam: 26/04/2019 Time of Exam: 2:00 PM to 5:00 PM Max. Marks: 50


Instructions to Candidates:

❖ Answer ALL the questions & missing data may be suitably assumed

Q. No	Questions	Marks	СО
1A	A two hinged parabolic arch has a span of 30 m and central rise of 6 m. What must be maximum intensity of UDL acting on left half of the span, so that the horizontal thrust developed in arch support doesn't exceed 300 kN? Also, draw bending moment diagram for the arch under that load.	5	CO1
1B	Determine the reaction at the roller support for the propped cantilever beam shown in Fig.Q1B using Castigliano's second theorem.	3	CO2
1C	A fixed beam AB of span 5 m has a UDL of 5 kN/m throughout the span. Determine the magnitude and direction of rotation at support B, so that the fixed end moment at A becomes zero. Draw FBD of the beam. Take EI= 2000 kNm ² .	2	CO2
2A	Determine the support moments for the beam shown in Fig.Q2A , using three moment theorem. Draw BMD. El is constant throughout.	5	CO2
2B	Determine the support moments for the continuous beam shown in Fig.Q2B by slope – deflection method, if support B sinks by 15 mm. Take EI = 3×10^4 kN.m ² for all spans.	5	CO2
3 A	Determine the support moments for the T-frame shown in Fig.Q3A by moment distribution method and draw BMD.	6	CO3
3В	Determine the support moments for the continuous beam shown in Fig.Q3B by Kani's rotation method.	4	CO2
4A	Draw ILD for chords, U ₁ L ₁ , L ₀ U ₁ and U ₁ U ₂ of the truss shown in Fig.Q4A .	6	CO4
4B	Draw ILD for reaction at roller support for a propped cantilever beam of span 10 m considering interval of 2 m.	4	CO4
5A	Determine the collapse load for the frame shown in Fig.Q5A.	6	CO5
5B	Determine the shape factor for the section shown in Fig.Q5B.	4	CO5

CIE 2202 Page 1 of 2

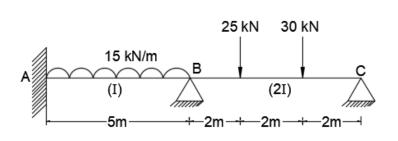
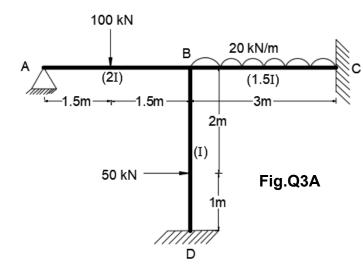



Fig.Q2B

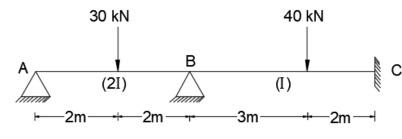


Fig.Q3B

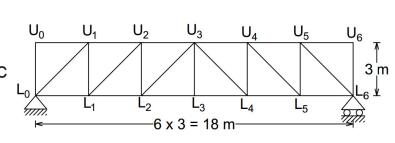
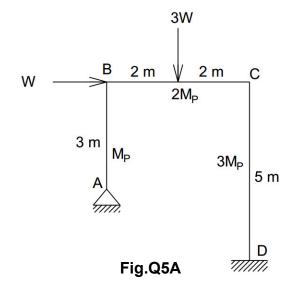



Fig.Q4A

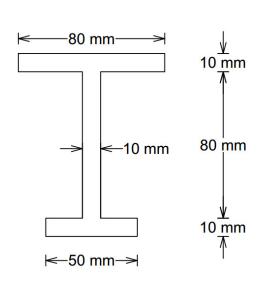


Fig.Q5B

CIE 2202

Page 2 of 2