Reg. No.

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, APRIL / MAY 2019

SUBJECT: ANALOG SYSTEM DESIGN [ELE 2204]

REVISED CREDIT SYSTEM

Time: 3 Hours Date: 04 May 2019		Max. Marks: 50		
Instructions to Candidates:				
	 Answer ALL the questions. 			
	 Missing data may be suitably a 	ssumed.		
1A.	Determine the input impedance a	nd output voltage for the circuit shown in fig	g 1A.	(02)
1B	For the ideal Op amp circuit show	<i>n</i> in fig 1B. Find v_0 and i_x , if $i_s = 8A$.		(03)
1C	A certain instrumentation amplif ratio of 100dB. It is used in noisy and the common-mode noise 1 (b) signal output (c) noise output	ier has a gain of 40dB and a common-mode environment in which the signal has a leve evel is 100mV. Determine (a) common-m and (d) output signal voltage to noise voltag	e rejection l of 50mV, node gain ge ratio.	(03)
1D	Define Slew Rate. What is the sign	ificance of slew rate in Op amp applications.		(02)
2A	For the circuit shown in fig 2A, (a phase shift and time delay at 1KH) plot the magnitude response $M(\omega)$ (b) dete z.	ermine the	(03)
2B.	Design a practical integrator with circuit diagram.	h $f_a = 5KHz$. Assume $C = 10nF$ if required.	Draw the	(03)
2C.	Draw the transfer characteristics Op amp and practical diode and in	for the precision rectifier shown in fig 2C. Assume $V_i = 10 \sin \omega t$.	sume ideal	(04)
3A	Using just one op-amp powered f Vo = 3 – 2.5V1 – 5V2 where V1 at 10 k Ω , if required.	rom ± 12V regulated supplies, design a circu nd V2 are input signals. Assume feedback res	uit to yield sistance of	(03)
3B	Design an Op-amp based circuit and 5V peak. Assume saturation w	which generates a triangular wave of freque voltage of $\pm 10V$ and capacitor of $0.1\mu F$ if requ	ency 5kHz iired.	(03)
3C.	Using the pole-zero concept, desi off frequency of 8kHz. Assume cap of filter.	gn a 4^{th} order Butterworth high pass filter values of 0.1 μF if required. Determine the or	with a cut- verall gain	(04)
4A	Using 555 timers design a circuit C=0.047uF if required. Generate V	t to generate the waveform shown in Fig 4. 702 using V01.	A. Assume	(04)
4B	Draw the circuit diagram and detector.	explain the working of opamp based pos	itive peak	(02)
4C	Realize a circuit to implement a 10sinwt. Draw the input and outp resistance of 10 k Ω , if required.	VTC as shown in Fig 4C. Assume Vsat=±12 ut waveforms with transition points. Assume	V, Input is e feedback	(04)

- 5A Derive expressions for input and output resistance of an Amplifier which makes use of Voltage shunt feedback topology. Also draw the MOSFET based circuit which incorporates this feedback.
- 5B What is Desensitivity factor? State the significance of D in Feedback Amplifiers (02)
- 5C For the circuit of fig 5C, determine the (a) feedback voltage (b) frequency of the output waveform $v_0(t)$. Assume $\pm V_{sat} = \pm 12V$. (03)

(05)

Fig 4A

ELE 2204