Reg. No.

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, APRIL / MAY 2019

SUBJECT: DIGITAL SYSTEM DESIGN & COMPUTER ARCHITECTURE [ELE 2203]

REVISED CREDIT SYSTEM

Time: 3 H	ours	Date: 02, May 2019	Max. Marks:	50					
Instructions to Candidates:									
*	Answer ALL the questions.								
*	Missing data may be suitably	assumed.							

- 1A. With the help of four bit ripple carry adder block diagram, explain the top down and bottom up digital design methodologies. (03)
- **1B.** Write a Verilog HDL code for a one bit magnitude comparator using dataflow modeling. *(03)*
- **1C.** Alissa arrives home, but her keypad lock has been rewired and the old code no longer works. A piece of paper taped to it showing the equation of the FSM based door locking circuit implemented with D flip flops. The equations of the FSM are :

z (keypad lock) = Q_1Q_{2} ,

D1 = Q_1 . $\overline{Q_2} x + \overline{Q_1} Q_2 \overline{x}$, D2= x

Where D1 and D2 are the flip flop inputs, x is the external input, z is the external output, Q_1 and Q_2 are the flip flop states. Draw the state diagram of the circuit and develop a Verilog HDL code for the state diagram using behavioral modeling. (04)

- **2A.** Construct a ring counter (sequence 1000 0100 -0010 -0001) using structural modeling. Use 2 bit up counter and 2 to 4 decoder as the instances for the ring counter. *(03)*
- **2B.** Develop the Verilog HDL code for a 3 bit even parity generator using gate level modeling. *(03)*
- **2C.** Write functions for addition, subtraction, multiplication and division. Using these functions write a Verilog HDL code for the arithmetic circuit which performs the operation according to the given table. A and B are one bit input. Use procedural assignment statement for the function call.

Select input	Operation				
00	A+B				
01	A-B				
10	AX B				
11	A÷B				

(04)

3A.	Given an instruction set and the corresponding relative frequency, encode using Huffman's method and calculate the redundancy. Also calculate the redundancy if block code encoding technique is used.											
		Instruction	Io	I ₁	I ₂	I ₃	I4	I ₅	I ₆	I ₇	I ₈	
		Relative frequency	0.11	0.31	0.25	0.04	0.04	0.01	0.05	0.14	0.05	(04)
3B.	Perform 18 X -25 using Modified Booth's algorithm. (04)									(04)		
3C.	Identify the addressing modes and justify the same, for the following instructions.											
	i) HLT											
									(02)			
4A.	Perform the following for 4 bit Add and Shift multiplication algorithm											
	i) Write a register transfer logic and develop the control signals											
	ii) Draw the flow chart											
										(05)		
4B.	Prove that Nano memory saves the space of control memory size with an example.									(03)		
4C.	List out the differences between two Priority interrupt handling techniques.								(02)			
5A.	The Parameter of Computer Memory System are specified as follows											
	Main Memory Size = 4096 blocks											
	Cache Memory Size =1024 blocks											
	Block Size =16 words											
	Determine the Size of the tag field of Main memory address under the following conditions											
	i) Fully associative Mapping											
	ii) Direct Mapping											
	iii) Set associative mapping with 8 block /set								(03)			
5B.	Write the differences between Paging and Segmentation.								(03)			
5C.	List the CPLD/ FPGA programming technologies. Explain any two with the neat diagram. ((04)			