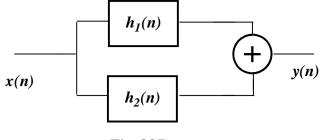
Reg. No.

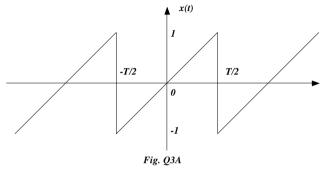
## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal) REDBY


# **IVSEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)**

### **END SEMESTER EXAMINATIONS, APRIL / MAY 2019**

#### SIGNALS AND SYSTEMS [ELE 2201]


**REVISED CREDIT SYSTEM** 

| Time | 3 Hours 26 APRIL 2019 Max. Marks:                                                                                                                                                                                                                                                              | • 50         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|      | <ul> <li>ctions to Candidates:</li> <li>Answer ALL the questions.</li> <li>Missing data may be suitably assumed.</li> </ul>                                                                                                                                                                    |              |
| 1A.  | Table of Transform may be used.<br>Check whether each of the following time signals is periodic. If periodic determine the fundamental period.<br>i. $x(n) = 1 + e^{\frac{j4\pi n}{7}} - e^{\frac{-j2\pi n}{5}}$<br>ii. $x(n) = 3e^{\frac{j3(n+\frac{1}{2})}{5}}$<br>iii. $x(t) = e^{(-1+j)t}$ | (03)         |
| 1B.  | Determine whether the following signals are energy or power signals. Also determine<br>the energy and power of the signals.<br>i. $x(t) = e^{-2 t }$<br>ii. $x(n) = 2e^{j(\frac{\pi n}{2} + \frac{\pi}{6})}$                                                                                   | (03)         |
| 1C.  | A continuous time signal $x(t)$ is defined as:<br>$x(t) = \begin{cases} -(t+1); & -1 \le t \le 0 \\ t; & 0 \le t \le 1 \\ 1; & 1 \le t \le 2 \\ -(t-3); & 2 \le t \le 3 \end{cases}$ Sketch<br>i. $x\left(\frac{-2t}{5} + \frac{1}{3}\right)$<br>ii. $x(-2t-2)$                                | (04)         |
| 2A.  | Determine whether the system represented by the following input-output relations<br>are (a) linear (b) time invariant<br>i. $y(n) = x(2n)$<br>ii. $y(t) = tx(t)$                                                                                                                               | (03)         |
| 2B.  | Two causal LTI systems with unit sample responses $h_1(n)$ and $h_2(n)$ are connected as shown in Fig. Q2B. If the input $x(n) = [1, 1]$ and $h_2(n) = \delta(n) - \delta(n-2)$ , the                                                                                                          | (03)<br>(03) |



#### Fig Q2B

- **2C.** Evaluate  $y(t) = x_1(t) * x_2(t)$  if  $x_1(t) = u(t+1) u(t-1)$  and  $x_2(t) = u(t+2) 2u(t) + u(t-2)$
- **3A.** Find the Exponential Fourier coefficient of the waveform shown in Figure Q3A.



- **3B.** Find the Fourier transform of the continuous-time signal x(t) using properties.  $x(t) = \frac{d}{dt} \{ te^{(-3t)}u(t-2) \}$
- **3C.** Find the forced response of linear time invariant discrete time system described by difference equation  $y(n) + \frac{8}{15}y(n-1) + \frac{1}{15}y(n-2) = x(n) + x(n+1)$ . Given y(-1) = y(-2) = 1 and  $x(n) = \left(\frac{-1}{3}\right)^n u(n)$  (04)
- **4A.** Using the defining equation determine DTFS coefficient X(k) for signal  $x(n) = 2 + cos\left(\frac{6\pi n}{13} + \frac{\pi}{6}\right)$ . Also plot magnitude and phase spectra. (03)

**4B.** If the DTFT of 
$$x(n) = X(e^{j\Omega})$$
 Prove that DTFT of  $nx(n) = \frac{jd}{d\Omega} (X(e^{j\Omega}))$  (03)

**4C.** If the DTFT of  $x(n) = n \left(\frac{-5}{3}\right)^n u(n)$  is  $X(e^{j\Omega})$ , without evaluating  $X(e^{j\Omega})$ , find y(n) in each of the following.

i. 
$$Y(e^{j\Omega}) = e^{-j3\Omega}X(e^{j\Omega})$$
  
ii.  $Y(e^{j\Omega}) = \frac{d}{d\Omega} \left\{ e^{-j3\Omega} \left[ X\left[ e^{j\left(\Omega + \frac{\pi}{6}\right)} \right] - X\left[ e^{j\left(\Omega - \frac{\pi}{6}\right)} \right] \right] \right\}$ 
(04)

- **5A.** The impulse response of a discrete time LTI system is given by  $h(n) = \left(\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{3}\right)^n u(n).$  Find the z transform of h(n) and its ROC. Also find the location of poles and zeros. (03)
- **5B.** Find the z transform of the sequence  $x(n) = n \left(\frac{1}{2}\right)^{|n|}$  (03)
- **5C.** Find the impulse response of the system if  $x(n) = \delta(n) + \frac{1}{4}\delta(n-1) \frac{1}{8}\delta(n-2)$  and  $y(n) = \delta(n) \frac{3}{4}\delta(n-1)$ . Use z transform tool. (04)



(04)

(03)

(03)