Reg. No.

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, JUNE 2019

SIGNALS AND SYSTEMS [ELE 2201]

REVISED CREDIT SYSTEM

Time	3	Hours
	J	nours

11 JUNE 2019

Max. Marks: 50

Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data may be suitably assumed.
- Table of Transform may be used.

1A. A discrete- time signal x[n] is defined as $x[n] = \{1, -1, 1, 1, -1, 1, 2\}$

Plot (i)
$$x(\frac{2}{3}n-1)$$
, (ii) $x(2n)$, (iii) $x(3n+1)$, (iv) $\left(x(\frac{1}{2}n-3)*\delta(n-2)\right) + \cos(\beta\pi n)$ (04)

1B. Determine whether the signal shown in Fig Q1B is energy or power signal. Also determine energy and power of signal.

(03)

1C. Determine whether or not each of the following signals is periodic. If the signal is periodic determine its fundamental period.

Fig.Q1B

i.
$$x(n) = \cos\left(\frac{n\pi}{3}\right) - \cos\left(\frac{n\pi}{6}\right) + 3\sin\left(\frac{n\pi}{4} + \frac{\pi}{6}\right)$$

ii. $x(n) = \sum_{k=-\infty}^{\infty} \{\delta[n-3k] - \delta[n-2-3k]\}$
(03)

- **2A.** Evaluate $y(t) = x_1(t) * x_2(t)$; where $x_1(t) = u(t+2) - u(t-2)$ and $x_2(t) = u(-t) - 2u(-t-2)$ (04)
- **2B.** The impulse response of the system is given below. Determine whether the given system is causal, stable and memory less.

(i)
$$h(t) = e^{-3|t|}$$
 (ii) $h[n] = \cos(\frac{\pi}{4}n)[u(n) - u(n-8)]$ (03)

2C. Evaluate y(n) = x(n) * h(n)

where
$$x(n) = \left(\frac{1}{3}\right)^n u(n-1)$$
 and $h(n) = u(n) - u(n-10)$ (03)

3A. Consider the periodic square wave x(t) as shown in Fig Q3A. Determine the complex exponential Fourier series of x(t)

- **3B.** Evaluate the total response for a system described by the following difference equation y(n) + 0.25y(n-1) - 0.125y(n-2) = x(n) + x(n-1)where $x[n] = (0.5)^n u[n]; \quad y(-1) = 4, y(-2) = 1$ (04)
- **3C.** Using properties, find the FT of $x(t) = \left[\frac{2\sin(3\pi t)}{\pi t}\right] \left[\frac{\sin(2\pi t)}{\pi t}\right]$ (03)
- **4A.** Using the defining equation for DTFS coefficients evaluate the DTFS representation for the following signal and also sketch the magnitude and phase spectra. $x[n] = \sin(\frac{6\pi}{17}n + \frac{\pi}{3})$ (03)

4B. Let x(n) be sequence $x(n) = \{3, 0, 1, -2, -3, 4, 1, 0, -1\}$ with DTFT $X(e^{j\Omega})$. Evaluate the

following functions of $X(e^{j\Omega})$ without computing $X(e^{j\Omega})$

(i)
$$X(e^{j0})$$
 (ii) $\int_{-\pi}^{\pi} |X(e^{j\Omega})|^2 d\Omega$ (iii) $\int_{-\pi}^{\pi} X(e^{j\Omega}) d\Omega$ (03)

4C. If the DTFT of $x(n) = n \left(\frac{-5}{3}\right)^n u(n)$ is $X(e^{j\Omega})$, without evaluating $X(e^{j\Omega})$, find y(n) in each of the following.

i.
$$Y(e^{j\Omega}) = e^{-j3\Omega}X(e^{j\Omega})$$

ii. $Y(e^{j\Omega}) = \frac{d}{d\Omega} \left\{ e^{-j3\Omega} \left[X \left[e^{j\left(\Omega + \frac{\pi}{6}\right)} \right] - X \left[e^{j\left(\Omega - \frac{\pi}{6}\right)} \right] \right] \right\}$
(04)

5A. Find the Z–Transform of x(n) using properties of z transform.

i)
$$x[n] = (n-1)\left(\frac{1}{4}\right)^n u[n] + \left(\frac{1}{2}\right)^n u[n-1]$$

ii) $x(n) = Sin(\frac{\pi}{4}n)\left(\frac{1}{4}\right)^n u(n-1)$ (05)

5B. Determine (i) transfer function and (ii) impulse response representation of the causal system described by the following difference equation.

$$y(n) - \frac{4}{5}y(n-1) - \frac{16}{25}y(n-2) = 2x(n) + x(n-1)$$
(05)