

IV SEMESTER B. TECH END SEMESTER EXAMINATIONS, JUNE 2019

SUBJECT: OE 1: CORROSION ENGINEERING [MME 3281]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Draw neat sketches whenever required using pencil only.

1A.	Does the term "Corrosion applies to non-metals? If yes, explain with suitable examples of metals & non-metals subjected to corrosion.	03		
1B.	Discuss the roles played by a corrosion engineer. How does a corrosion engineer differ from a corrosion scientist?			
1C.	"Galvanic cell is a spontaneous corrosion cell". Do you agree? If yes, why it is called a spontaneous cell? Explain with a suitable sketch.			
2A.	With the help of a line diagram, explain the working principle of a reference			
	electrode having a standard electrode potential of 0 Volts at all temperature	~~		
	conditions.	03		
2B.	Explain the role of electrochemistry, metallurgy and thermodynamics in corrosion. Do the above factors affect corrosion rate? Explain.	03		
2C.	What are the applications of E-pH Diagrams? Are these diagrams useful to			
	corrosion engineer? What are the deficiencies of these diagrams? Discuss			
	how the various zones of these diagrams help in the analysis of the corrosion			
	problems.			
3A.	What is meant by concentration polarization? With the help of a neat			
	schematic representation, explain the process of concentration polarization			
	during hydrogen reduction.	03		
3B.	A component is subjected to uniform corrosion. Your superior advised you to			
	take corrective measures. What are the possible alternate measures you may			
	take to prevent failure of the component?	03		
3C.	Discuss the causes of crevice corrosion. Analyze the factors that are to be			
	accounted for, in crevice corrosion problems.	04		

4A.	Explain clearly the mechanism of friction oxidation. Which are the places				
	where friction oxidation leads to failure.				
4B.	i.	Avoid electrical/physical contact between two dissimilar metals in the			
		assembly. Why?			
	ii.	Passivation is a must for anodic protection of structures. Why?			
	iii.	Stray currents due to cathodic protection provided by two owners of			
		different buried structures placed adjacent, leads to requirement of			
		continuous current increase on both the structures. Why?	03		
4C.	What general design rules do you recommend for a design engineer to				
	incorporate the best corrosion resistance to the material during design				
	phase?				
5A.	What are the objectives achieved by corrosion testing? What precautions do				
	you ta	you take during specimen preparation for corrosion testing?			
5B.	What does aeration means? Is it a desirable phenomenon in corrosion? If				
	not, h	not, how its effect is overcome?			
5C.	What are the corrosion data to be recorded by the corrosionist after testing				
	for the purpose of reporting to superiors or for future use?				