

Reg. No.					

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc (Applied Mathematics and Computing) END SEMESTER EXAMINATIONS, APRIL/MAY 2019

Complex Analysis [MAT 4204]

(REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date: 25 – 04 - 2019	MAX. MARKS: 50
Note: (i) Answer ALL questions	. (II)All questions carry equal Mark (3 + 3 + 4)	

- 1A. If f(z) = u + iv is analytic then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$
- 1B. Find the analytic function f(z) = u + iv if $u = e^{x}(x \cos y y \sin y)$
- 1C. Find the bilinear transformation which maps the points 1, i, -1 onto the points i, 0, -i. Also find (i) image of |z| < 1 (ii) fixed points of the transformation.
- 2A. Show that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.
- 2B. Show that the line integral $\int_{\gamma} p dx + q dy$, defined in a region Ω , depends only on the end points of γ if and only if there exists a function U(x, y) in Ω with the partial derivatives $\frac{\partial U}{\partial x} = p, \frac{\partial U}{\partial y} = q$.
- 2C. If a function f(z) is analytic on a rectangle R, then show that $\int_{\partial R} f(z) dz = 0$, where ∂R is the boundary of R.
- 3A. If a piecewise differentiable closed curve γ does not pass through the point a, then the show that the value of the integral $\int_{\gamma} \frac{dz}{z-a}$ is a multiple of $2\pi i$.

3B. Using residues evaluate
$$\int_{|z|=3} \frac{z^2}{(z-1)^2(z+2)} dz$$

3C. Obtain all possible expansions of $f(z) = \frac{1}{(z-1)(z-2)}$, about the origin.

- 4A. State and prove Argument principle
- 4B. State and prove Lucas's theorem

4C. Evaluate
$$\int_0^{2\pi} \frac{d\theta}{37 - 12\cos\theta}$$
.

- 5A. Obtain Cauchy's estimate for derivatives of a function f(z) which is analytic and bounded on C: |z a| = R and hence prove Liouville's theorem.
- 5B. Evaluate $\int_0^\infty \frac{\cos mx}{a^2+x^2} dx$ using contour integration.
- 5C. Suppose that $|f(z)| \le |f(z_0)|$ at each point z in some neighbourhood $|z z_0| < \varepsilon$, in which f(z) is analytic. Then show that f(z) is constant in the neighbourhood. Hence establish the maximum modulus principle.
