

Reg. No.					

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc (Applied Mathematics and Computing)) END SEMESTER EXAMINATIONS, April/May 2019

Subject [Linear Algebra-MAT 4206]

N4 7)

(REVISED CREDIT SYSTEM-2017)								
Time: 3 Hours	Date: 27.04.2019	MAX. MARKS: 50						
Note: (i) Ans	swer all FIVE FULL questions							
(ii) All	questions carry equal marks (4+3+3)							
1. (a) If A is a $m \times n$ matrix with entries in a field F, then show that								
	rowrank(A) = column rank(A).							
(b)) Check whether the following matrix is diagonalizab	le; $\begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$.						
(c)	(c) Let e be an elementary row operation and let E be the $m imes m$							
elementary matrix $E = e(I)$. where I is the identity matrix of or								
	Then, show that for every $m \times n$ matrix A, $e(A) = EA$.							
		t(A) is the product nt linear operator						
	on V, i.e., a projection. Prove that $(I + E)$ is invertible and find $(I + E)^{-1}$.							
3. (a)	 (i + 2) + i If A is an n × n matrix, the prove that, the followin (i) A is invertible (ii) The homogeneous system AX = 0 has only X = 0. (iii) The system of equations AX = Y has a solut matrix Y. 	the trivial solution						
(b)	If V is an inner product space, then for any vectors α , β in V, show that							
. ,	(i) $ < \alpha, \beta > \le \alpha \beta $.							

(ii) $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$. (P.T.O)

- (c) Let T be a linear transformation from vector space V into W. Define T^t . Show that the null space of T^t is the annihilator of T. Also, show that, if V and W are finite dimensional, then $rank(T) = rank(T^t)$.
- 4. (a) Let n > 1 and let D be an alternating (n 1)-linear function on $(n - 1) \times (n - 1)$ matrices over K. Prove that for each $j, 1 \le j \le n$, the function E_j defined by $E_j(A) = \sum_{i=1}^n (-1)^{i+j} A_{ij} D_{ij}(A)$ is an alternating n- linear function on $n \times n$ matrices. Also prove that if D is a determinant function, so is each E_j .
 - (b) If f is a non-zero linear functional on the vector space V, then show that the null space of f is a hyperspace in V. Conversely, show that every hyperspace in V is the null space of a (not unique) non-zero linear functional on V.
 - (c) For a square matrix A, show that sum of its eigenvalues is trace of A and product of the eigenvalues is determined of A.
- 5. (a) Let *R* be the field of real numbers, and let *D* be a function on 2 × 2 matrices over *R*, with values in *R*, such that D(AB) = D(A)D(B) for all *A*, *B*. Suppose also that D([0 1] 1 0] ≠ D([1 0] 1]). Prove the following.
 (i) D(0) = 0;
 - (i) D(0) = 0; (ii) D(A) = 0 if $A^2 = 0$;
 - (iii) D(B) = -D(A) if B is obtained by interchanging the rows (or columns) of A.
 - (iv) D(A) = 0 if one row of A is zero.
 - (b) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x c_1) \dots (x c_k)$ where c_1, \dots, c_k are distinct elements of F.
 - (c) Is there a linear transformation T from R^3 into R^2 such that

T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)? If exists, find one of them. How many such transformations exist?