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Note: (i) Answer all the questions.
(ii) Answer the questions to the point.

1. (i) Derive matrix for J. operator for j = 3. [5]
(ii) Optimize the trial function exp(—ar) and evaluate the ground
state energy of the hydrogen atom. [5]

2. (i) Solve the following one dimensional infinite potential well:
V(z)=0 for—a<z<a V(r)=oc0 forlz|>a

using the WKB method and compare it with the exact solution.  [3]

(ii) Mention the validity condition of the WKB method. [2]
(iii) By applying the WKB method connection formulae obtain ex-
pression for energy levels of a particle in a potential well. [5]

3. (i) Briefly discuss the time dependent perturbation theory for
a two level system. (5]

(ii) A system is in an unperturbed state n is suddenly subjected to
a constant perturbation H'(r) which exists during time 0 — ¢. Find
the probability for transition from state n to state £ and show that
it varies simple harmonically with

angular frequency= E’E;FLE" and amplitude= 47 ElkHé”EE)Q . [5]

4. (i) Using first order Born approximation for weak and spher-
ically symmetric potential obtain expression of scttering ampli-
tude. [5]

(ii) Calculate the scattering amplitude for a particle moving in the
potential

V(r)= o ; re:cp (—T)

T'o
where C and r, are constants. [5]
5. (i) Using the Klein - Gordon equation show that the expression
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for relativistic and non - relativistic charge densities are differ-
ent. (5]

(ii) Show that the Dirac matrices are traceless and can be of even
order only. [5]

Useful formulae:
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