

Reg.					
No.					

DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc (Physics) END SEMESTER EXAMINATIONS, APRIL/MAY 2019

SUBJECT CONDENSED MATTER PHYSICS-II [PHY 5010] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date:30 [™] April 2019	MAX. MARKS: 50					
Note: (i) Answer ALL questions							
(ii) Draw diagrams, and write equations wherever necessary							

- (a) Explain how a superconductor can be used to make a magnet and a cryotron.
 (b) What are the assumptions in London's theory? Derive the expression for penetration depth and comment on its temperature dependence.
 (c) What is Meissner effect? Show that a superconductor is a perfectly diamagnetic material. [3+5+2]
- 2. (a) Explain the terms intermediate state, surface energy and coherence.
 (b) State the assumptions of Ginzburg-Landau theory. Derive the two G.L. equations.
 - (c) Derive the expression for fluxoid. [2+5+3]
- 3. (a) What is electron lattice interaction? Using this explain the formation of Cooper pairs.

(b) Using BCS theory, show that a bound state exists irrespective of smallness of attractive potential.

(c) Describe Josephson tunneling using pendulum analogy. [3+5+2]

4. (a) Describe Landau's theory of phase transition. Discuss superfluidity of He-3.(b) Using the concept of diffusion, derive the expression for total width of depletion layer.

(c) What is Schottky effect? For a metal-and n-type semiconductor junction, draw the energy level diagrams when no contacts are made and also when the junction is forward biased. [3+4+3]

P.T.O.

5. (a) Explain the terms- radiative and non-radiative transitions. Elucidate the working of a diode laser.

(b) With appropriate diagrams, describe the construction and working of a p-n junction solar cell.

(c) An abrupt p⁺n junction in Ge is doped with donors and acceptors concentrations of $N_a = 10^{22}/m^3$ and $N_d = 10^{22}/m^3$ respectively. Determine the diffusion potential and space-charge layer width. Given $\varepsilon_r = 16$, $n_i = 2.2 \times 10^{19}/m^3$, $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m.

[3+3+4]