D. N.					
Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

II SEMESTER M.Tech.(BME) DEGREE END SEM EXAMINATIONS APR/MAY 2019 SUBJECT: PATTERN RECOGNITION (BME 5237) Elective II (REVISED CREDIT SYSTEM) Saturday, 2nd MAY 2019: 9 am to 12 noon

TIME: 3 HOURS

MAX. MARKS: 50

[04]

[03]

Instructions to Candidates:

Answer all the questions.
Draw labeled diagrams wherever necessary.

1. (a) Consider two classes with the training sample data as: $C_1 = \begin{bmatrix} 1 & 1 & 2 & 3 & 3 \\ 1 & 3 & 2 & 1 & 3 \end{bmatrix}$ and $\begin{bmatrix} 05 \end{bmatrix}$ $C_2 = \begin{bmatrix} 0 & 0 & -1 & 0 & 1 \\ 4 & 6 & 5 & 5 & 5 \end{bmatrix}$. The density function defined on these samples is given by $p(\boldsymbol{x}|\boldsymbol{\theta}) = e^{-||\boldsymbol{x}-\boldsymbol{\theta}||^2}$

Estimate the parameter θ associated with each class using the Maximum Likelihood method.

- (b) Consider two classes with set of feature vectors as: $C_1 = \begin{bmatrix} -1 & -1 & 0 & 0 \\ -2 & 0 & -1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 05 \end{bmatrix}$ $C_2 = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 0 & 1 & -1 \end{bmatrix}$. Design the decision surface using Perceptron criteria, with $\eta = 0.8$, and $W(0) = \begin{bmatrix} 1.4 \\ -0.6 \\ -1.4 \end{bmatrix}$. Draw the scatter plot with decision surface classifying these classes.
- 2. Consider two classes C_1 and C_2 with priori probabilities $P(C_1)$ and $P(C_2)$ respectively. If class conditional densities are normally distributed with the covariance matrices $\sum_i = \sigma^2 I$, for i = 1,2 then for minimum-error-rate classification for these classes.
 - a) Determine the discriminating function $g_i(x)$ for each class. [03]
 - b) Design the decision surface.
 - c) Analyze the decision surface.
- 3. (a) Develop a training algorithm to update the weights associated with Multi-Layer Perceptron [05] having one hidden layer. Discuss the following stages in detail: feed-forward, error estimation, sensitivity at output and hidden layer, and change in weights to update the new weights.

- (b) Consider two classes with the training sample data as: $C_1 = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 2 & 0 & -2 & 0 \end{bmatrix}$ and $\begin{bmatrix} 05 \end{bmatrix}$ $C_2 = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 1 & 3 & 2 \end{bmatrix}$. Determine the optimum direction to project classes that can be discriminated. Illustrate this procedure with the help of a scatter plot.
- 4. Consider a two classes A & B, with P(A) = P(B), having three independent binary features $[x_1 \ x_2 \ x_3]^T$. The feature probabilities as $p_1 = p_2 = p_3 = 0.8$, $q_1 = q_2 = q_3 = 0.2$, where $p_i = P[x_i = 1|A]$ and $q_i = P[x_i = 1|B]$, for i = 1,2,3. Then
 - a) Determine the Bayesian decision rule and find the sample data for class *A* & *B*. [05]
 - b) Explain, how each feature contributes towards the right decision.
 - c) Sketch this procedure graphically.
- 5. (a) Consider the set of feature samples

А	В	С	D	Е	F	G	Н
2	-1	2	-4	-4	0	-1	-3
0	-2	2	-2	-4	-1	0	-3

Explain Graph based clustering using the Minimal Spanning Tree algorithm. Determine three clusters for given set of feature samples.

(b) Design the decision-surface for the three classes ω_1, ω_2 and ω_3 having the corresponding [05] linear discriminant functions given as:

 $g_1(X) = -2x_1 - 0.75x_2 + 10.25,$ $g_2(X) = 2x_1 - 0.75x_2 + 10.25$ and $g_3(X) = 0.75x_2 + 2.25$ respectively. Determine and plot the regions pertaining to the classes. Classify an unknown sample $x' = [5 \ 4.5]^T$.

[05]

[03]

[02]