Reg. No.

IISEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, APRIL 2019 (REGULAR)

BIO5221- BIOREACTOR DESIGN AND ANALYSIS

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	How do you define reaction rate in i. Homogeneous reaction system ii. Heterogeneous reaction system	3
1B.	Write on the various dimensionless numbers that are used in estimating (i) External Mass transfer effects (ii) Internal mass effects (ii) Simultaneous internal and external mass transfer effects.	4
1C	 Hydrolysis of Rice bran oil is carried out in a CSTR with free Lipase enzyme. The substrate (S₀=4M) is pumped at 0.1 L/min. Find the volume of the reactor to achieve 65% conversion at steady state for the following kinetics Substrate inhibition kinetics Product inhibition kinetics Kinetics data: V_m=0.028 M/min, K_M=0.23 M, K_I=0.2 M, P₀=0 	3
2A.	Consider a 1000 liter Chemostat in which biomass is being produced with glucose as the substrate. The microbial growth follows a Monod relationship with $\mu_m = 0.4 \text{ h}^{-1}$, Ks = 1.5 g/l, and the yield factor Y _{x/s} =0.5. If normal operation is with a sterile feed containing 10 g/l glucose at a rate of 100 liter/h: What is the specific biomass production rate (g/l-h) at steady state? If recycle is used with a recycle stream of 10 liter/h and a recycle biomass concentration five times as large as that in the reactor exit, what would be the new specific biomass production rate?	5
2B.	What do you mean by constant feed rate policy in the operation of immobilized enzyme reactor system? Develop a suitable model for predicting the time course profiles of conversion due to enzyme deactivation for M-M kinetics, no pore diffusion effects in packed bed bioreactor (PFR).	5
3A.	The data Shown below are the fractional conversions of substrate(X) obtained for the hydrolysis of benzoyl-arginine ethyl ester (BAEE) by the enzyme ficin immobilized to CMcellulose. The immobilized enzyme was packed in a column (plug-flow) reactor, and the data were obtained for different flow rates (V ₀) through the column, and substrate concentrations (So). Estimate the Michaelis constant for the hydrolysis of BAEE and comment on the results.	5

