ANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

Г

II SEMESTER M.TECH. EXTERNAL EXAMINATIONS MAY 2019

SUBJECT: STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS IN

BIOTECHNOLOGY [BIO 5253]

Date of Exam: 02/05/2019 Time of Exam: 9.00 AM – 12.00 PM Max. Marks: 50

	Instructions to Candidates:													
		*	Answer A	LL the	question	ns & mi	issing	data may	be suita	able ass	sumed			
1A.	Enz 53, 2	yme 25. F	activity (n ind out th	nM/min e IQR	i) of lipa and co	ase is (nstruct	given l the b	below, 1 ox-whis	I 2, 5, 22 ker plot	2, 30, 7	7, 36, 14	, 42, 1	15,	3
1B.	For estir Xo is the f g/L, cond be if	cells mate s the final s Xf = certa the	growing i d as follow initial cel substrate 12.7 g/L a tion is ± 0 maximum	n liquid ws: Yx/ I conce concer and Xo .1 g/L, I possil	I mediu /s=(Xf-) entratio ntration = 0.66 how ac ole erro	m, the (o)/(Sc n, So is . For a g/L. If curate or in Yx	overa o-Sf), v s the i partic the un must t /s must	II bioma where X nitial su cular cel certaint the mea st be les	iss yield (f is the bstrate l culture y assoc sureme ss than	l coeffi final c conce a, So = tiated v ent for c 5%.	cient Yx ell conce ntration 30 g/L, with the cell conc	/s can entrati and S Sf = 0 substr entrat	be on, if is .85 ate tion	3
1C.	If your constructing a regression model, how will you check the following, i. Errors are normally distributed, ii. Errors have the same variance iii. Errors are independent iv. Errors have a mean of zero										4			
2A.	Fit tl valu you	Fit the following data into Y = mX and and Y = mX + C models and determine the values of R ² by least square regression analysis. Which one of these models do you choose? Why? Comment on the results: $\frac{X \ 25 \ 50 \ 75 \ 100}{X \ 25 \ 50 \ 75 \ 100}$											6	
2B.	The dum (SS)	follc imy f), me	owing table actors, la ean square Run Numbe r 1 2 3 4 5 6 7 8	le is th belled e (MS) A + + + + - - - -	ne resu d1, d2, and F- D1 - + + + - + -	It of 8 and di ratio of B - - + + + + + +	-experies - experies -	riment I ermine variable C - + + + +	D3 + - + - + + + -	gn, so n effec D + + + - - +	232 1.1 there a ct, sum a Yield 10 9 10 9 8 7 7 7 7	are th of squa	ree are	4
			8	-	-	-	-	-	-	-	7			

	The study on biosorption of chromium by <i>Sargassum sp</i> used the 2 ³ -factorial design. The selected design is given below.										
								1			
		1	1	1	1	-1	-1	-1	-1		
		1	1	-1	-1	1	1	-1	-1		
	рн	1	-1	1	-1	1	-1	1	-1		
3A.	Y (%) /5 8.4 59.6 83.2 99.5 9.9 65.6 73.8										
	<i>u</i> . Fit the equation $r = D_0 + D_1X_1 + D_2X_2 + D_3X_3 + D_4 X_1X_2 + D_5X_1X_3 + D_6X_2X_3 + D_7X_1X_2X_2$										
	b. If the value of MSE is 21.22 & if the experiments are done in duplicates.										
	calcul	ate the st	andard e	rrors of Y	and ea	ch parame	eter.		aphoatoo,		
	c. Diagra	ammatica	lly repres	ent the m	ain effe	ct of T, C a	and pH a	nd interact	ion effect		
	of var	ables.									
3B.	List and d	lescribe tl	he metho	ds used t	o proce	ss the res	earch da	ita by desc	riptive	2	
	and infere	ential ana	lysis	- f		, mathaala	1 t				
4A.	DISCUSS II	ne alffere	nt types o	of experin	nental n	ypotnesis	testing r	nethods us	sed in	5	
	A group of seven chickens reared on a high protein diet of 12, 15, 11, 16, 14, 1								5 14 14		
	and 16 o	unces; a	second	group of	five ch	ickens of	same ac	ge, similarl	y treated		
	except that they receive a low protein diet, of 8, 10, 14, 10 and 13 ounces. assumed										
4B.	mean (or A1) = 10 for the sample of 7 chickens and assumed mean (or A2) = 8 for 5										
	the sample of 5 chickens Test at 5 per cent level whether there is significant										
	evidence that additional protein has increased the weight of the chickens by										
	A chemic	al engine	er is inf	terested i	n detei	mining the		tina condit	<u>z</u> ions that		
	maximize the yield of a process. The engineer suspects that two factors namely										
	reaction time and reaction										
	temperatu	ure influ	ience tl	he yield	. EXP	STEPS	<u> </u>	2	Y		
	Currently	the pro	cess is	set at a		oriain	35	155	40.3		
	reaction	time of	35 min	utes and	2	origin + ∆	?	?	41		
	vield is only 40 %. Because it is $\frac{3}{4}$ origin + 2 Δ ? ? 42.9								42.9		
	unlikely that the current operating $\frac{4}{5}$ origin $\frac{+3}{4}$ $\frac{2}{7}$?	47.1		
	region c	ontains t	the optir	num, the	$\frac{5}{6}$	origin + 5Λ	?	?	53.8		
5A.	engineer	decides t	to fit a lo	wer orde	r 7	origin + 6∆	?	?	59.9	5	
	polynomia	al model t	o the yiel	d and ther	<u>8</u>	origin + 7∆	?	?	65		
	move to t	the optim	um using	g steepes	t 9	origin + 8∆	?	?	70.4		
	ascenting	scent method as shown below.				origin +9 ∆	?	?	77.6		
	y = 40	.44 + 0.7	$75x_1 + 0$	$.325x_2$	11	origin + 10Δ	?	?	80.3		
	i.	Is there a	any curva	ture in the	9				10.2	1	
	model?										
	ii. Why the higher order model terms are missing in the above regression										
	model. Explain										
		How do y	xplain	and to the	ontimi	zation usin					
	iii. The AN	How do y	xpiain you proce sults fo	eed to the	optimiz	zation usin	g RSM?	E MS		1	
	iii. The AN quadratic	How do y OVA re equatio	xpiain you proce esults fo n of L	eed to the or the accase	optimiz Source Mode	zation usin e SS I 59416	g RSM? 5 D .222 8	F MS	F]	
	iii. The AN quadratic productio	<u>How do y</u> OVA re equation n (using N	xpiain you proce sults fo n of L /linitab sc	eed to the or the accase oftware)	optimiz Source Mode	zation usin e SS I 59416	g RSM? 5 D .222 8	F MS - 400900.	F - 02		
	iii. The AN quadratic productio is presen	How do OVA re equation n (using N ted in th	xplain you proce esults fo n of L Ainitab sc e table.	eed to the or the accase oftware) Identify	optimiz Source Mode Interce	zation usin e SS I 59416 pt -	g RSM? D .222 8 1	F MS - 400900. 8	F - 02 -		
5B.	iii. The AN quadratic production is presen the mis	How do y OVA re equation n (using N ted in th sing in	xpiain you proce esults fo n of L Ainitab so e table. formation	eed to the or the accase oftware) Identify a and	optimiz Source Mode Interce	zation usin e SS I 59416 pt - 10683	g RSM? 5 D .222 8 1 .722 2	F MS - 400900. 8 -	F - 02 - 61	5	
5B.	iii. The AN quadratic production is present the mis complete	How doOVAreequationn (using Nted in thsinginthe analy	explain you proce esults for n of L Alinitab sc e table. formation rsis.	eed to the or the accase oftware) Identify n and	optimiz Source Mode Interce A B C	zation usin e SS I 59416 pt - 10683 - 9613.	g RSM? 5 D .222 8 1 .722 2 2 778 -	F MS 400900. 8 19559.3	F - 02 - 61 -	5	
5B.	iii. The AN quadratic production is presen the mis complete	How do y OVA re equation n (using N ted in th sing in the analy	xplain you proce esults fo n of L /linitab so e table. formation vsis.	eed to the or the accase oftware) Identify a and	optimiz Source Mode Interce A B C Error	zation usin e SS I 59416 pt - 10683 - 9613. 18230	g RSW? 5 D .222 8 1 .722 2 2 778 - .750 2	F MS 400900. 8 19559.3 7 -	F - 02 - 61 -	5	