Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH. EXTERNAL EXAMINATIONS REGULAR APRIL 2019

SUBJECT: DESIGN AND DEVELOPMENT OF BIOLOGICAL

TREATMENT PROCESSES [BIO 5247]

Date of Exam: 04/05/2019 Time of Exam: 9.00 AM – 12.00 PM Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions & missing data may be suitable assumed

	Write on the following parameters that are used in the design of activated sludge	$\left \right $				
	process					
1A.	i. Mixed liquor suspended solids (MLSS)					
	ii. Mixed liquor volatile suspended solids (MLVSS)					
	iii. Food to microorganisms (F/M) ratio					
1B.	Explain the ORBAL process that is used for BOD removal, Nitrification and	3				
10.	denitrification					
	Explain the following parameters that are used in the design of secondary					
	clarifier					
1C.	i. The over flow rate	4				
	ii. The weir loading rate					
	iii. The solid loading rate					
	Design an aerated lagoon to treat domestic wastewater with a total BOD of 400					
	mg/l, a TSS of 130 mg/l and daily flow of 8000 m ³ /d.					
	Data for heterotrophic bacteria:					
2A.	μ_m =2.8d ⁻¹ , Kd=0.03 d ⁻¹ , Y=0.5 mgVSS/mg BOD, Ks=60 mg BOD/I, θ =2.5 d,					
	BOD/TSS=0.63 and MLVSS=0.8 MLSS					
	i. Calculate the required surface area of the Lagoon					
	ii. Calculate power requirement for oxygen transfer and mixing					
	You are asked to design the separate stage for denitrification process with					
	completely mixed reactor behavior. The denitrifying bacteria has the following					
2B.	growth constants. Data for Denitrifying bacteria: μ_m =0.4 d ⁻¹ , K _{Dn} =0.16 mg/l,					
	Y=0.9, K _d =0.04 d ⁻¹ Influent substrate concentration (NO ₃ ⁻ N)=39 mg/l,					
	Effluent Substrate concentration (NO3-N)=1 mg/l, Influent flow rate=12918 m ³ /d					
		1				

	Calculate (i) Cell Residence time (θ_{C}) (ii) Hydraulic Residence time (θ)							
	(iii) Amount of sludge discarded.							
3А	Design an oxidation ditch for BOD removal only with the following data: Influent BOD=300 mg BOD/L (soluble), Effluent BOD=15 mg BOD/L (soluble), Q=20,000 m ³ /d, Y=0.5 mg VSS/mg BOD, Kd=0.03 d ⁻¹ , Ks=30 mg BOD/L, μm=2.5 d ⁻¹ . Assume that we want to allow for some sludge discard by using a sludge age (θ _c) 30 days and hydraulic residence time (θ) 15 h. Calculate i. Substrate and biomass concentrations ii. Amount of sludge discard iii. Amount of air required.							
3B.	Determine the rise in temperature for the aerobic stabilization of raw sewage sludge, if the initial dry matter content is around 32 g/L (average organic dry matter content of sewage sludge) and the biodegradability of 60% within the residence time in the sludge reactor. Specific energy requirement for heating 1 L of H_2O from 14.5–15.5 °C is 4.185 kJ.							
3C.	Determine theoretically the gas composition (% carbon dioxide and % methane) of biomolecule $C_5H_{11}NO_2S$ and the volume of methane produced from 1 kg of biomolecule (NTP). $\begin{array}{c} C_cH_hO_oN_nS_s + \{(4c - h - 2o + 3n + 2s)/4\}H_2O \rightarrow \\ \{(4c - h + 2o + 3n + 2s)/8\}CO_2 + \{(4c + h - 2o - 3n - 2s)/8\}CH_4 + nNH_3 + sH_2S\end{array}$							
4A	Explain the removal of nitrogen from wastewater in order to avoid eutrophication.							
4B	The following data were obtained from an experiment to determine the BOD rationconstant k and ultimate BOD (L) for an untreated wastewater by daily differencemethod and Fujimoto method:Time (d)123456789BOD (mg/L)65109138158178190200205210							
5A	Describe the anaerobic treatment of wastewater by UASB reactor.							
5B	What are the different methods available for disinfection of wastewater? Explain each one of them.							